

Handbook of Modules

Master Program Materials Science

Faculty of Mathematics, Natural Sciences, and Materials Engineering

Examination regulations as of 20.11.2013

Index by Groups of Modules

1) 1a Basics of Materials Science I

PHM-0144: Materials Physics (6 ECTS/LP, Wahlpflicht)	. 6
PHM-0110: Materials Chemistry (6 ECTS/LP, Wahlpflicht)	8

2) 1b Basics of Materials Science II

PHM-0117: Surfaces and Interfaces (6 ECTS/LP, Wahlpflicht)	10
PHM-0053: Chemical Physics I (6 ECTS/LP, Wahlpflicht)	.12

3) 2 Methods in Materials Science

PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht) * 14
PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht) *16
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)18
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht) *22
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht) *
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht) *26
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)
PHM-0221: Method Course: X-ray Diffraction Techniques (8 ECTS/LP, Wahlpflicht)30
PHM-0235: Method Course: 2D Materials (8 ECTS/LP, Wahlpflicht) *
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht) *
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) *36
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht) *
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht) 40

4) 3a Conducting and Presenting Scientific Work - Seminar

PHM-0158: Introduction to Materials	(= Seminar) (4 ECT	S/LP. Pflicht)	
		o , _ , , , , , , , , , , , , , , , , , , ,	

5) 3b Conducting and Presenting Scientific Work - Laboratory Project

* = Im aktuellen Semester wird mindestens eine Lehrveranstaltung für dieses Modul angeboten

PHM-0159 · Laborator	/ Project (10 ECTS/LE	P, Pflicht)	43
		, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······································

6) 4 Materials Science - Major Topic

a) Physics of Materials

PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht) *	. 44
PHM-0160: Dielectric and Optical Materials (6 ECTS/LP, Wahlpflicht) *	. 46
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht) *	. 48
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht) *	. 50
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)	.52

b) Chemistry of Materials

PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht) *	54
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht) *	56
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)	58
PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht) *	60
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht)	62
PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht) *	64

c) Engineering of Materials

PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht) *	65
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht)	67
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht) *	69
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht)	71
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)	73
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht) *	75

7) 5 Materials Science Elective Topic (PO13)

PHM-0224: Method Course: Theoretical Concepts and Simulation (8 ECTS/LP, Wahlpflicht) *	7
PHM-0166: Carbon-based functional Materials (Carboterials) (6 ECTS/LP, Wahlpflicht)79	9
PHM-0174: Theoretical Concepts and Simulation (6 ECTS/LP, Wahlpflicht)87	1
PHM-0058: Organic Semiconductors (6 ECTS/LP, Wahlpflicht) *83	3
PHM-0066: Superconductivity (6 ECTS/LP, Wahlpflicht)8	5

* = Im aktuellen Semester wird mindestens eine Lehrveranstaltung für dieses Modul angeboten

PHM-0060: Low Temperature Physics (6 ECTS/LP, Wahlpflicht)	87
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht)	89
PHM-0050: Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht) *	91
PHM-0068: Spintronics (6 ECTS/LP, Wahlpflicht)	93
PHM-0057: Physics of Thin Films (6 ECTS/LP, Wahlpflicht)	95
PHM-0056: Ion-Solid Interaction (6 ECTS/LP, Wahlpflicht) *	97
PHM-0069: Applied Magnetic Materials and Methods (6 ECTS/LP, Wahlpflicht)	99
PHM-0052: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (6 ECTS/LP, Wahlpflicht) *	101
PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht) *	103
PHM-0160: Dielectric and Optical Materials (6 ECTS/LP, Wahlpflicht) *	105
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht) *	107
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht) *	109
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)	111
PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht) *	113
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht) *	115
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)	117
PHM-0218: Novel Methods in Solid State NMR Spectroscopy (6 ECTS/LP, Wahlpflicht) *	119
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)	120
PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht) *	122
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht)	124
PHM-0165: Introduction to Mechanical Engineering (6 ECTS/LP, Wahlpflicht)	126
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht) *	127
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)	129
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht) *	131
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht)	133
PHM-0203: Physics of Cells (6 ECTS/LP, Wahlpflicht)	135
PHM-0217: Advanced X-ray and Neutron Diffraction Techniques (6 ECTS/LP, Wahlpflicht) *	137
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht) *	139
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)	141

* = Im aktuellen Semester wird mindestens eine Lehrveranstaltung für dieses Modul angeboten

PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht) * 143
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht) *145
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht) *
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) * 151
PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht) *153
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht) * 155
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht) *
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht) 159
PHM-0221: Method Course: X-ray Diffraction Techniques (8 ECTS/LP, Wahlpflicht)161
PHM-0234: 2D Materials (6 ECTS/LP, Wahlpflicht) *163
PHM-0235: Method Course: 2D Materials (8 ECTS/LP, Wahlpflicht) * 165

8) 6 Finals

PHM-0169: Masterthesis (26 ECTS/LP, Pflicht)	. 167
PHM-0170: Colloquium (4 ECTS/LP, Pflicht)	. 168

^{* =} Im aktuellen Semester wird mindestens eine Lehrveranstaltung für dieses Modul angeboten

Module PHM-0144: Materials Ph	ysics	6 ECTS/LP
Version 1.1.0 (since WS15/16)		
Person responsible for module: apl. P	rof. Dr. Helmut Karl	
Contents: • Electrons in solids • Phonons • Properties of metals, semicondu • Application in optical, electronic, • Dielectric solids, optical properti	and optoelectronic devices	
 structure, charge carrier statistic are capable to apply derived apply basic characteristics of semicon have the competence to apply the of solids and to describe their fur understand size effects on material 	ms and concepts of solid state physics I s, phonons, doping and optical propertie proximations as the effective mass or the ductor materials, nese concepts for the description of elec nctionalities,	e electron-hole concept to describe tric, electro-optic and thermal properties
120 h studying of course content using		
60 h lecture and exercise course (atte	ndance)	1
Conditions: basic knowledge of solid state physics		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Materials Physic Mode of Instruction: lecture Language: English	cs	

Language: English Contact Hours: 3

Learning Outcome:

see module description

Contents:

- · Electrons in solids: Free electron gas, band structure, effective mass
- · Lattice dynamics: Phonons, phonon dispersion, acoustic and optical phonons
- · Properties of metals: Electrical conductivity, Fermi surfaces, thermal properties
- · Properties of semiconductors: Pure, intrinsic semiconductors, equilibrium conditions, doping
- Properties of dielectric materials: Propagation of electromagnetic waves, frequency dependent optical properties, polarization effects.
- Application in devices: Heterostructures, Schottky contact, pn-junction, solar cell, light emission and technological aspects

Literature:

- Hummel R. E. : Electronic Properties of Materials Springer 2001 (UP1000 H925)
- Burns G.: Solid State Physics Academic Press 1990 (UP1000 B967)
- Ashcroft N. W., Mermin N.D.: Solid State Physics (UP1000 A 824)
- Kittel C. : Introduction to Solid State Physics (UP1000 K 62)

Part of the Module: Materials Physics (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Materials Physics

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Physics

Module PHM-0110: Materials Cl	nemistry	6 ECTS/L
Version 1.0.0 (since WS09/10)		·
Person responsible for module: Prof.	Dr. Henning Höppe	
Contents:		
 Revision of basic chemical con 	cepts	
 Solid state chemical aspects of 	selected materials, such as	
 Thermoelectrics 		
 Battery electrode materia 	lls, ionic conductors	
 Hydrogen storage materi 	als	
 Data storage materials 		
 Phosphors and pigments 		
 Ferroelectrics and Piezoe 	electrics	
 Heterogeneous catalysis 		
 nanoscale materials 		
Learning Outcomes / Competences	s:	
The students will		
 be able to apply basic chemica 	l concepts on materials science probler	ns.
	tructure-property relations of materials	
-		emical properties of selected compound
classes,	, · · · · · · · · · · · · · · · · · · ·	
·	proaches towards relevant materials,	
	re research using online data bases.	
Workload:		
Total: 180 h		
20 h studying of course content using	literature (self-study)	
20 h studying of course content using 20 h studying of course content using		
	gh exercises / case studies (self-study)	
60 h lecture and exercise course (atte		
Conditions:	achalan in Matariala Caianaa aawaaa	
The lecture course is based on the B		
Chemie I and Chemie III (solid state of		
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		·
Part of the Module: Materials Chen	nistry	
Mode of Instruction: lecture	-	
Language: English		
Contact Hours: 3		
Learning Outcome:		
see description of module		

see description of module

Contents:

see description of module

Literature:

- A. R. West, Solid State Chemistry, John Wiley, Chichester.
- U. Müller, Inorganic Structural Chemistry, Wiley-VCH.
- R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley VCH.
- Textbooks on Basics of Inorganic Chemistry such as J. E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie, de Gruyter, or equivalents.
- Moreover, selected reviews and journal articles will be cited on the slides.

Part of the Module: Materials Chemistry (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see description of module

Contents:

see description of module

Literature:

see associated lecture

Examination

Materials Chemistry

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Chemistry

Module PHM-0117: Surfaces an	d Interfaces	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Prof.	Dr. Siegfried Horn	
Contents: Introduction		
The importance of surfaces and	l interfaces	
Some basic facts from solid state phy	sics	
Crystal lattice and reciprocal latElectronic structure of solidsLattice dynamics	tice	
Physics at surfaces and interfaces		
 Structure of ideal and real surfa Relaxation and reconstruction Transport (diffusion, electronic) Thermodynamics of interfaces Electronic structure of surfaces Chemical reactions on solid sta Interface dominated materials (on interfaces te surfaces (catalysis)	
Methods to study chemical composition	on and electronic structure, application	examples
 Scanning electron microscopy Scanning tunneling and scanning Auger – electron – spectroscopy Photo electron spectroscopy 		
Learning Outcomes / Competences The students:	3:	
surfaces and interfaces,acquire the skill to solve problem interface physics,	ms of fundamental research and applied certain problems autonomously based o	
Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throu	provided materials (self-study)	
Conditions: The module "Physics IV - Solid State Materials Science program should be		
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Surfaces and Interfaces

Mode of Instruction: lecture

Language: English

Frequency: annually

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Ertl, Küppers: Low Energy Electrons and Surface Chemistry (VCH)
- Lüth: Surfaces and Interfaces of Solids (Springer)
- Zangwill: Physics at Surfaces (Cambridge)
- Feldmann, Mayer: Fundamentals of Surface and thin Film Analysis (North Holland)
- Henzler, Göpel: Oberflächenphysik des Festkörpers (Teubner)
- Briggs, Seah: Practical Surface Analysis I und II (Wiley)

Part of the Module: Surfaces and Interfaces (Tutorial)

Mode of Instruction: exercise course

Language: English

Frequency: annually

Contact Hours: 1

Examination

Surfaces and Interfaces

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces

Module PHM-0053: Chemical Pl	nysics I	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof.	Dr. Wolfgang Scherer	
Contents:		
Basics of quantum chemical me		
Molecular symmetry and group	-	
The electronical structure of tra		_
Learning Outcomes / Competences	5:	
The students:		
 know the basics of the extende 	d-Hückel-method and the density functio	nal theory,
 know the basics of group theory 		
	e gained through consideration of symme	etry from vibration-, NMR-, and UV/VIS-
spectroscopy, and	t the basical geometric, electronical and i	magnetical properties of transition metal
complexes.	t the basical geometric, electronical and	nagnetical properties of transition metal
-	skills: ability to specialize in a scientific to	pic and to apply the acquired knowledge
for solving scientific problems.		
Remarks:		
	calculations autonomously and analyze	electronical structures of molecules on a
computer cluster within the scope of t		
Workload:		
Total: 180 h		
20 h studying of course content using	provided materials (self-study)	
20 h studying of course content using		
	gh exercises / case studies (self-study)	
60 h lecture and exercise course (atte	endance)	
Conditions:		
It is recommended to complete the ex		
and FP17 (Raman-spectroscopy) of t Fortgeschrittenenpraktikum".	he module "Physikalisches	
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Phys	ics I	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		

Contents:

- Basics of quantum chemical methods
 - Extended Hueckel method (EHM)
 - · Modern quantum chemical methods of chemical physics
 - Application: exemplary calculations and interpretation of simple electronical structures
- Molecular symmetry and group theory
 - Symmetry operations and matrix transformations
 - Point groups
 - Reducible and irreducible representations
 - Character tables
 - Application: infrared- and raman-spectroscopy, NMR-spectroscopy
- · The electronical structure of transition metal complexes
 - Ligand field theory and angular-overlap model (AOM)
 - The physical basics of the spectrochemical series
 - Molecular orbital theory of transition metal complexes
 - Application: UV/VIS-spectroscopy, molecular magnetism

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- D. C. Harris und M. D. Bertolucci, Symmetry and Spectroscopy (Dover Publications)
- D. M. Bishop, Group Theory and Chemistry (Dover Publications)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Part of the Module: Chemical Physics I (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Chemical Physics I

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics I

Module PHM-0224: Method Course mulation Method Course: Theoretical Concepts	-	8 ECTS/LF
Version 1.0.0 Person responsible for module: Prof. D	r. Liviu Chioncel	
	ods (computational algorithms) for class . The following common applications wil	
 Monte-Carlo integration, stochast Feynman path integrals: the conr Oder and disorder in spin system 	nection between classical and quantum	systems
The students are able to present	ining numerical solutions to problems to (graphically), discuss and analyze the r formulatind and carrying out a collabora	esults
Remarks: The number of students will be limited t	to 8.	
Workload: Total: 240 h 90 h preparation of presentations (self- 60 h preparation of written term papers 60 h studying of course content (self-st 90 h (attendance)	(self-study)	
Conditions: Knowledge of the programming langua taught in the modul PHM-0041. Require in physics: Classical Mechanics (Newto Thermodynamics and Quantum Mecha	ements to understand basic concepts on, Lagrange), Electrodynamics,	Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination	

Parts of the Module

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- · path integrals, quantum statistics, enumeration, cluster algorithms

Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

Assigned Courses:

Method Course: Theoretical Concepts and Simulation (lecture)

Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Contents:

see above

Literature:

see above

Assigned Courses:

Method Course: Theoretical Concepts and Simulation (Practical Course) (internship)

Examination

Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks

Description:

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

Module PHM-0171: Method Cour	se: Coordination Materials	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Hana Bunzen	Dr. Dirk Volkmer	
Contents:		
diffraction) 3. Material composition and stabilit		s spectroscopy, IR spectroscopy, X-ray rrying materials)
Learning Outcomes / Competences		
The students will learn how to:		
	ounds by selected analytical techniques materials based on organic / inorganic	
Remarks: ELECTIVE COMPULSORY MODULE		
Total: 240 h 120 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using	literarture (self-study) h exercises / case studies (self-study)	
Conditions: none		Credit Requirements: written report (protocols)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4	Coordination Materials (Practical C	ourse)
Assigned Courses:		
Method Course: Coordination Mater	ials (Practical Course) (internship)	
Part of the Module: Method Course:	Coordination Materials (Seminar)	

Part of the Module: Method Course: Coordination Materials (Seminar)

Mode of Instruction: seminar

Language: English

Contact Hours: 2

Literature:

- Chemical databases
- Primary literature

Assigned Courses:

Method Course: Coordination Materials (Seminar) (seminar)

Examination

Method Course: Coordination Materials (Seminar) seminar

Examination Prerequisites:

Method Course: Coordination Materials (Seminar)

	rse: Electron Microscopy	8 ECTS/LP
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. I	Dr. Ferdinand Haider	
Contents:		
1. Scanning electron microscopy (-	
2. Transmission electron microsco	py (TEM)	
Learning Outcomes / Competences	::	
The students:		
lectures to teach the theoretical	•	
Remarks: ELECTIVE COMPULSORY MODULE		
Total: 240 h 150 h studying of course content using 90 h lecture and exercise course (atte		
Conditions: Recommended: knowledge of solid-st	ate physics, reciprocal lattice	Credit Requirements: regular participation, oral presentation (10 min), written report (one report pe group)
	Recommended Semester:	Minimal Duration of the Module:
Frequency: each summer semester	from 2.	1 semester[s]
Frequency: each summer semester Contact Hours:	from 2. Repeat Exams Permitted:	1 semester[s]
		1 semester[s]
Contact Hours:	Repeat Exams Permitted: according to the examination	1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]

Contact Hours: 2

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Electron Microscopy report Examination Prerequisites: Method Course: Electron Microscopy

Method Course: Electronics for I	Course: Electronics for Physicists Physicists and Materials Scientists	8 ECTS/LI
Version 1.0.0 (since SoSe15)		
Person responsible for module: A	Andreas Hörner	
Contents:		
1. Basics in electronic and ele	ectrical engineering [4]	
2. Quadrupole theory [2]		
3. Analog technique, transiste		
4. Boolean algebra and logic		
5. Digital electronics and calc		
6. Microprocessors and Netw	vorks [4]	
7. Basics in Electronic [8]		
8. Implementation of transisto	ors [8]	
9. Operational amplifiers [8]		
10. Digital electronics [8]	nt [0]	
11. Practical circuit arrangeme		
Learning Outcomes / Compete The students:	ences:	
-	lesign, measuring and control technology, a dent working on circuit problems. They can	
	DULE	
Attendence in the Mathed Cour		
	ints for the lecture Electronics for Physicists and Materi	als Scientists (combined lab course sts and Materials Scientists.
AND lecture) excludes credit po Workload: Total: 240 h	ints for the lecture Electronics for Physici	
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content	ints for the lecture Electronics for Physici using provided materials (self-study)	
AND lecture) excludes credit po Workload: Total: 240 h	ints for the lecture Electronics for Physici using provided materials (self-study)	
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content	ints for the lecture Electronics for Physici using provided materials (self-study)	
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content 100 h lecture and exercise cours	ints for the lecture Electronics for Physici using provided materials (self-study)	sts and Materials Scientists.
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content 100 h lecture and exercise cours Conditions: none	ints for the lecture Electronics for Physici using provided materials (self-study)	sts and Materials Scientists.
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content 100 h lecture and exercise cours Conditions: none	ints for the lecture Electronics for Physici using provided materials (self-study) e (attendance)	sts and Materials Scientists. Credit Requirements: written report (one per group)
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content 100 h lecture and exercise cours Conditions: none Frequency: each semester	ints for the lecture Electronics for Physici a using provided materials (self-study) the (attendance) Recommended Semester: from 1.	sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content 100 h lecture and exercise cours Conditions: none Frequency: each semester Contact Hours:	ints for the lecture Electronics for Physici a using provided materials (self-study) se (attendance) Recommended Semester: from 1. Repeat Exams Permitted:	sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content 100 h lecture and exercise cours Conditions:	ints for the lecture Electronics for Physici a using provided materials (self-study) the (attendance)	sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content 100 h lecture and exercise cours Conditions: none Frequency: each semester Contact Hours: 7	ints for the lecture Electronics for Physici a using provided materials (self-study) se (attendance) Recommended Semester: from 1. Repeat Exams Permitted:	sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module:
AND lecture) excludes credit po Workload: Total: 240 h 140 h studying of course content 100 h lecture and exercise cours Conditions: none Frequency: each semester Contact Hours: 7 Parts of the Module	ints for the lecture Electronics for Physici a using provided materials (self-study) the (attendance)	sts and Materials Scientists. Credit Requirements: written report (one per group) Minimal Duration of the Module: 1 semester[s]

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

Method Course: Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Method Course: Electronics for Physicists and Materials Scientists

Module PHM-0172: Method Cour Materials	se: Functional Silicate-analogous	8 ECTS/LF
Version 1.0.0 (since SoSe15)		1
Person responsible for module: Prof. D	or. Henning Höppe	
Contents:		-
Synthesis and characterization of funct	tional materials according to the topics:	
 Silicate-analogous compounds Luminescent materials / phospho Pigments Characterization methods: XRD, 	ors spectroscopy (luminescence, UV/vis, F	T-IR), thermal analysis
Learning Outcomes / Competences: The students will know how to:		
autoclave reactions, use of silica	aration techniques (e.g. solid state react ampoules), heres (e.g. reducing, inert conditions), s from single-crystal data,	ion, sol-gel reaction, precipitation,
Remarks: ELECTIVE COPULSORY MODULE		
Workload: Total: 240 h 120 h lecture and exercise course (atte 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: Recommended: attendance to the lect	ure "Advanced Solid State Materials"	Credit Requirements: written report (protocol)
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		<u>.</u>

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Assigned Courses:

Method Course: Functional Silicate-analogous Materials (Practical Course) (internship)

Examination

Method Course: Functional Silicate-analogous Materials

seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0148: Method Co Method Course: Optical Properties	ourse: Optical Properties of Solids of Solids	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Pro	f. Dr. Joachim Deisenhofer	
Contents: Electrodynamics of solids		
Maxwell equationsElectromagnetic wavesRefraction and interference, F	Fresnel equations	
FTIR spectroscopy		
Fourier transformationMichelson-Morley and GenzeSources and detectors	l interferometer	
Terahertz Time Domain spectrosco	ру	
Generation of pulsed THz racGated detection, Austin switc		
Elementary excitations in solid mate	erials	
 Rotational-vibrational bands Infrared-active phonons Interband excitations Crystal-field excitations 		
Learning Outcomes / Competenc The students:	es:	
Remarks:		_
Workload: Total: 240 h 90 h lecture and exercise course (a 30 h studying of course content usin 30 h studying of course content usin 90 h studying of course content thro	ng provided materials (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge in electrodynamics and optics	a solid-state physics, basic knowledge in	written report
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Assigned Courses:

Method Course: Optical Properties of Solids (lecture)

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Optical Properties of Solids (Practical Course) (internship)

Examination

Method Course: Optical Properties of Solids report Examination Prerequisites: Method Course: Optical Properties of Solids

Module PHM-0149: Method Cour Method Course: Methods in Biophysic		8 ECTS/LP
Version 1.0.0 (since SoSe15)		
Person responsible for module: Dr. Ste	efan Thalhammer	
Contents:		
Unit radiation biophysics		
 Concepts in radiation protection Low-dose irradiation biophysics DNA repair dynamics of living ce Confocal scanning laser microsometry 	•	
Unit microfluidic		
Microfluidic systemsAccoustic driven microfluidicsCalculation of microfluidic proble	ems	
Unit analysis		
Learning Outcomes / Competences The students:	:	
 acquire basic knowledge of fluid technologies of microfluidic anal 	immun-histochemical staining procedu confocal scanning microscopy, oblems on small length scales,	
Remarks: ELECTIVE COMPULSORY MODULE		
The course will partly take place at the	e Helmholtz Center Munich.	
Workload: Total: 240 h		
Conditions: Attendance of the lecture "Biophysics	and Biomaterials"	Credit Requirements: 1 written lab report
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	Methods in Biophysics	
Assigned Courses:		

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English

Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Assigned Courses:

Method Course: Methods in Biophysics (Practical Course) (internship)

Examination

Method Course: Methods in Biophysics report Examination Prerequisites: Method Course: Methods in Biophysics

Module PHM-0151: Method Cou and Characterization	rse: Porous Materials - Synthesis	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Dirk Volkmer	
Contents: Synthesis of porous functional materia Frameworks)	als (e.g. aerogels, mesoporous silica mat	erials, zeolites, Metal-Organic
Characterization methods		
 Structure and composition (XRE Thermal analysis (TGA) Adsorption and diffusion (BET,) Catalytic properties (GC/MS, TF 	oore size distribution, pulse chemisorptio	n)
Learning Outcomes / Competences The students will learn how to	:	
	ion techniques (e.g. hydrothermal, solvot cated to porous materials.	hermal, microwave synthesis),
Remarks: ELECTIVE COMPULSORY MODULE	 E	
Workload: Total: 240 h 120 h internship / practical course (att 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	literarture (self-study)	
Conditions: Recommended: lecture Functional Po	rous Materials	Credit Requirements: written report (editing time 3 weeks) - written exam
		Please note that final grade of the Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted (40:60).
	Recommended Semester:	Minimal Duration of the Module:
Frequency: each winter semester	from 1.	1 semester[s]

Parts of the Module

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Version 1.0.0 Person responsible for module: Prof. Dr. V PD Dr. Georg Eickerling Contents: Subjects of the practical training and the a of X-ray diffraction techniques: Data collection and reduction techniques Symmetry and space group determination Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination: • Patterson method • Direct methods	ccompanying lecture are the theoret	ical basics and the practical applicatior
PD Dr. Georg Eickerling Contents: Subjects of the practical training and the a of X-ray diffraction techniques: Data collection and reduction techniques Symmetry and space group determination Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination: • Patterson method	ccompanying lecture are the theoret	ical basics and the practical applicatior
Subjects of the practical training and the a of X-ray diffraction techniques: Data collection and reduction techniques Symmetry and space group determination Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination: • Patterson method		ical basics and the practical applicatior
of X-ray diffraction techniques: Data collection and reduction techniques Symmetry and space group determination Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination: • Patterson method		ical basics and the practical applicatior
Symmetry and space group determination Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination: • Patterson method	lts	
Structural refinements: • The Rietveld method • Difference Fourier synthesis Structure determination: • Patterson method	lts	
 The Rietveld method Difference Fourier synthesis Structure determination: Patterson method 	lts	
Patterson method	lts	
	lts	
Interpretation of structural refinement resu		
Errors and Pitfalls: twinning and disorder		
Learning Outcomes / Competences: The students:		
have the skill to perform under guida are competent to analyze hands-on Remarks: ELECTIVE COMPULSORY MODULE		
Workload:		
Total: 240 h	,	
90 h lecture and exercise course (attendar 90 h studying of course content through exercise		
30 h studying of course content using litera		
30 h studying of course content using prov	rided materials (self-study)	
Conditions: none		
	ecommended Semester: om 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: Re	epeat Exams Permitted:	
	cording to the examination gulations of the study program	
Parts of the Module		-
Part of the Module: Method Course: X-r	ay Diffraction Techniques	
Mode of Instruction: lecture		
Language: English Contact Hours: 2		

Part of the Module: Method Course: X-ray Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course Language: German Contact Hours: 4

Examination

Method Course: X-ray Diffraction Techniques

written exam / length of examination: 90 minutes

Module PHM-0235: Method Cour	se: 2D Materials	8 ECTS/LP
Method Course: 2D Materials		
Version 1.0.1 (since SoSe18)		
Person responsible for module: Prof. D	Dr. Hubert J. Krenner	
 Contents: Fabrication of monolayers of 2D Characterization of the structural Modelling of selected physical pr 	l, optical and vibrational properties of 2D) Materials
• • • • • •	tion of fabrication of selected monolayer tion of basic characterization methods for n methods	
Workload: Total: 240 h 90 h lecture and exercise course (atter 90 h studying of course content throug 30 h studying of course content using I 30 h studying of course content using I	h exercises / case studies (self-study) literarture (self-study)	
Conditions: Basic knowledge of solid state physics, optics and quantum mechancis		Credit Requirements: written report, editing time 3 weeks, max. 30 pages
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	•	·
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	2D Materials (Lecture)	
Assigned Courses:		
Method Course: 2D Materials (lecture	e)	
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4		
Assigned Courses: Method Course: 2D Materials (lecture	e)	

Examination Method Course: 2D Materials report Description: written report

Module PHM-0153: Method Cour ting Materials Method Course: Magnetic and Superco		8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Philipp Gegenwart	,
Contents: Methods of growth and characterization	n:	
Sample preparation (bulk materials and	d thin films), e.g.,	
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanning tu magnetic susceptibility, electrical specific heat 		
Learning Outcomes / Competences: The students		
thin-film growth, X-ray diffractionare trained in planning and perfolearn to evaluate and analyze the	, magnetic susceptibility, dc-conductivity	roblems in experimental solid state
Workload: Total: 240 h 30 h studying of course content using p 30 h studying of course content using I 90 h studying of course content throug 90 h lecture and exercise course (atter	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: Recommended: basic knowledge in solid state physics and quantum mechanics		Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course: Mode of Instruction: lecture	Magnetic and Superconducting Mate	rials

Language: English Contact Hours: 2

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (lecture)

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (Practical Course) (internship)

Examination

Method Course: Magnetic and Superconducting Materials

Examination Prerequisites:

Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Co Spectroscopy	ourse: Modern Solid State NMR	8 ECTS/LP
Version 2.0.0 (since SoSe17) Person responsible for module: Pro	f. Dr. Leo van Wüllen	
Contents: Physical foundations of NMR spect	roscopy	
Internal interactions in NMR spectro	oscopy	
Chemical shift interactionDipole interaction andQuadrupolar interaction		
Magic Angle Spinning techniques		
Modern applications of NMR in mat	erials science	
Experimental work at the Solid-Stat	e NMR spectrometers, computer-aided an	alysis and interpretation of acquired data
 gain basic practical knowledge can under guidance plan characterization of advanced Remarks: ELECTIVE COMPULSORY MODU Workload: Total: 240 h 30 h studying of course content usi 90 h studying of course content three 	physical foundations of modern Solid-State te of operating a solid-state NMR spectron , perform, and analyze modern solid-state materials. ILE ng literarture (self-study) pugh exercises / case studies (self-study)	neter,
30 h studying of course content usi 90 h lecture and exercise course (a		
Conditions: The attendance of the lecture "NOVEL METHODS IN SOLID STATE NMR SPECTROSCOPY" is highly recommended.		Credit Requirements: Bestehen der Modulprüfung
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Cour Mode of Instruction: seminar	se: Modern Solid State NMR Spectrosco	ору

Language: English

Contact Hours: 2

Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (seminar)

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (Practical Course) (internship)

Examination

Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

Module PHM-0206: Method Cour under Pressure Method Course: Infrared Microspectro		8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. I	Dr. Christine Kuntscher	J
Contents: Electrodynamics of solids		
Maxwell equations and electromagnet	ic waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and semicond	ductors (Drude)	
ii. Interband absorptions in semiconduiii. Vibrational absorptionsiv. Multilayer systems	ctors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrometers i. Light sources ii. Interferometers iii. Detectors		
Microscope components High pressure experiments Equipment	S	
Pressure calibration		
Experimental techniques under high pr i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	ressure	
Learning Outcomes / Competences		
The students		
Learn about the basics of the light inte	raction with various materials and the fur	ndamentals of FTIR microspectroscopy
Are introduced to the high pressure eq	uipments used in infrared spectroscopy,	
Learn to carry out infrared microspectr	oscopy experiments under pressure,	
Learn to analyze the measured optical	spectra.	
Workload: Total: 240 h		
Conditions: none		Credit Requirements: Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: German

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course

Language: German

Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

Examination

Method Course: Infrared Microspectroscopy under Pressure report

Module PHM-0216: Method Cou	rse: Thermal Analysis	8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. Dr. Robert Horny	Dr. Ferdinand Haider	
Contents: Methods of thermal analysis: - Differential Scanning Calorimetry: Di - Thermo-gravimetric Analysis: TG - Dilatometry: DIL - Dynamic-mechanical Analysis: DMA Advanced Methods: - Modulated Differential Scanning Cal - Evolved Gas Analysis: EGA GCMS,	orimetry: MDSC	
Learning Outcomes / Competences The students:	:	
processes (metals, polymers, ce	Il processes in condensed matter ,e.g. eramics) plex experiments and the usage of adv	
Remarks:		
Workload: Total: 240 h 30 h studying of course content using 30 h studying of course content using 90 h lecture and exercise course (atte 90 h studying of course content throug	literarture (self-study)	
Conditions: Recommended: basic knowledge in s	olid-state physics	Credit Requirements: regular participation, oral presentation (10 min), written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: lecture Lecturers: Prof. Dr. Ferdinand Haide Language: English Contact Hours: 2		

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination Method Course: Thermal Analysis report

Module PHM-0158: Introduction	to Materials (= Seminar)	4 ECTS/LP
Version 1.0.0 (since SoSe15)	De Feedingendelleiden	
Person responsible for module: Prof.	Dr. Ferdinand Halder	
Contents: Varying topics for each year, giving a modern materials.	n overview into scope, application, req	uirements and preparation of all types of
Learning Outcomes / Competence The students:	S:	
	ications and processes of modern mate npile knowledge for examples of materia audience.	
Remarks: COMPULSORY MODULE		
Workload: Total: 120 h		
Conditions: Recommended: basic knowledge in r	naterials science	Credit Requirements: regular participation, oral presentation with term paper (30 - 45 minutes)
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 2	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Introduction to Mode of Instruction: seminar Language: English Contact Hours: 2	Materials (Seminar)	
Literature: specific for each topic, to be gath	ered by the students	

Examination

Introduction to Materials

presentation

Examination Prerequisites:

Introduction to Materials

	y Project	10 ECTS/LP
Version 1.0.0 (since SoSe15)		
Person responsible for module: Pro	of. Dr. Dirk Volkmer	
Contents: Experimental or theoretical work in 3 months.	a laboratory / research group in the Instit	tute of Physics. Has to be conducted within
Learning Outcomes / Competend The students:	es:	
research groups,experience the day to day life	nd concepts to pursuit a real research pr in a research group from within, ct a research project during their Masters	oject in the existing laboratories within the s thesis.
Remarks: COMPULSORY MODULE		
Workload: Total: 300 h		
Conditions: Recommended: solid knowledge in Materials Science, both experiment	(solid state) Physics, Chemistry and and theoretically	Credit Requirements: 1 written report (editing time 2 weeks)
Frequency: each semester	Recommended Semester: from 3.	Minimal Duration of the Module: 0 semester[s]
Contact Hours: 8	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Laboratory P Mode of Instruction: internship Language: English Contact Hours: 8	roject	
Literature:		

Laboratory Project project work Examination Prerequisites: Laboratory Project

Module PHM-0051: Biophysic Biophysics and Biomaterials	cs and Biomaterials	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: Dr	. Stefan Thalhammer	
Contents: • Radiation Biophysics • Microfluidics • Membranes • Membranal transport		
Learning Outcomes / Competen The students:	ces:	
 learn models of the (bio)poly neuronal networks, adapt skills in the independent translate a biological oberse Integrated acquirement of some set of the set of	and phenomena of biological physics, mer-theory, microfluidic, radiation biophys ent processing of problems and deal with c rvation into a physical question. oft skills: autonomous working with special pacity for teamwork, ability to document ex	urrent literature. They will be able to ist literature in english, acquisition of
	sing provided materials (self-study) rough exercises / case studies (self-study)	
Conditions: Mechanics, Thermodynamics, Sta Molecular Biology	tistical Physics, basic knowledge in	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Biophysics a Mode of Instruction: lecture Language: English Contact Hours: 3	and Biomaterials	
Learning Outcome: see module description		

Contents:
Radiation Biophysics
 Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics
 Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry Membranes
 Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model Lipid membranes and biological membranes, membrane elasticity Membranal transport
 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics
 Literature: T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes
Assigned Courses:
Biophysics and Biomaterials (lecture)
Part of the Module: Biophysics and Biomaterials (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1
Assigned Courses:
Biophysics and Biomaterials (Tutorial) (exercise course)
Examination

Biophysics and Biomaterials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Biophysics and Biomaterials

Module PHM-0160: Dielectric and Dielectric and Optical Materials	d Optical Materials	6 ECTS/LP
Version 1.1.0 (since SoSe15) Person responsible for module: Prof. D	r. Joachim Deisenhofer	
Contents: Optical materials:		
absorption) Anisotropic media, linear optics 		
Dielectric materials: Experimental techniques: quantit 	ies, broadband dielectric spectroscopy, r	nonlinear and polarization
 Dielectric properties of disordere Charge transport: hopping condution Maxwell-Wagner relaxations: equipaterials 	materials: relaxation processes, phenom d matter: liquids, glasses, plastic crystals ictivity, universal dielectric response, ion uivalent-circuits, applications (supercapa ies, polarization, relaxor ferroelectrics, a ns, materials, applications	s ic conductors citors), colossal-dielectric-constant
	ctromagnetic wave propagation and hav omena. They are able to analyze materia	-
Remarks: Elective compulsory module		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using I 80 h studying of course content throug 20 h studying of course content using p	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: Basic knowledge of solid state physics		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Dielectric and Optical Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Assigned Courses:

Dielectric and Optical Materials (lecture)

Examination

Dielectric and Optical Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Dielectric and Optical Materials

Module PHM-0059: Magnetisn	n	6 ECTS/LP
Version 1.0.0 (since WS09/10)		0 EC13/LF
Person responsible for module: Dr.	Hans-Albrecht Krug von Nidda	
Contents:		
 History, basics 		
 Magnetic moments, classical 	and quantum phenomenology	
 Exchange interaction and me 	ean-field theory	
 Magnetic anisotropy and mag 	-	
Thermodynamics of magnetic		
Magnetic domains and doma		
Magnetization processes and	a micro magnetic treatment	
AC susceptibility and ESR		
 Spintransport / spintronics Recent problems of magnetis 		
Learning Outcomes / Competend	ces:	
The students:		
for their description, like meahave the ability to classify diffiniterpretation, and	n-field theory, exchange interactions and ferent magnetic phenomena and to apply indently to treat fundamental and typical to	the corresponding models for their
Workload: Total: 180 h 60 h lecture and exercise course (a 20 h studying of course content usi 80 h studying of course content thro 20 h studying of course content usi	ng literarture (self-study) ough exercises / case studies (self-study)	
Conditions:		
basics of solid-state physics and qu		
Frequency: annually	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module	· · · · · · · · · · · · · · · · · · ·	
Part of the Module: Magnetism		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		

Contents:

see module description

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Assigned Courses:

Magnetism (lecture)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Magnetism (Tutorial) (exercise course)

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Module PHM-0048: Physics and	Technology of Semiconductor	6 ECTS/LP
Devices		
Physics and Technology of Semicond	uctor Devices	
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. [Dr. Hubert J. Krenner	
Contents:		
	ors (electronic bandstructure, doping, car	rier excitations and carrier transport)
2. Semiconductor diodes and trans	istors	
3. Semiconductor technology		
excitations, and carrier transportApplication of developed concept semiconductors.	nd semiconductor physics such as electr ts (effective mass, quasi-Fermi levels) to describe and understand the operation p	describe the basic properties of
 Integrated acquisition of soft skil 	relevant methods and tools in semicond ls: autonomous working with specialist lit y for teamwork, ability to document experies of the semicondense of the semicondense of the semicondense of the semicondense of the semiconde	erature in English, acquisition of
Workload:		
Total: 180 h		
20 h studying of course content using		
20 h studying of course content using		
80 h studying of course content throug		
60 h lecture and exercise course (atter		Γ
Conditions: recommended prerequisites: basic kno physics and quantum mechanics.	owledge in solid state physics, statistical	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics and Teo	chnology of Semiconductor Devices	
Mode of Instruction: lecture		
L anguage: English		
Contact Hours: 3		
Learning Outcome: see module description		
Contents:		
see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Assigned Courses:

Physics and Technology of Semiconductor Devices (lecture)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Assigned Courses:

Physics and Technology of Semiconductor Devices (Tutorial) (exercise course)

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructur Nanostructures / Nanophysics	es / Nanophysics	6 ECTS/LP
Version 1.1.0 (since WS09/10) Person responsible for module: Prof. D	or. Hubert J. Krenner	
2. Magnetotransport in low-dimensi	vires and dots, low dimensional electron onal systems, Quanten-Hall-Effect, Qua ells and quantum dots and their application	ntized conductance
 Profound knowledge of low-dime novel functional devices for high- Knowledge of different fabrication Application of these concepts to Integrated acquirement of soft sk 	ntal concepts in modern nanoscale scier ensional semiconductor structures and ho frequency electronics and optoelectronic n approaches using bottom-up and top-d tackle present problems in nanophysics sills: autonomous working with specialist y for teamwork, ability to document expe	ow these systems can be applied for cs lown techniques literature in English, acquisition of
Workload: Total: 180 h 20 h studying of course content using p 80 h studying of course content throug 20 h studying of course content using I 60 h lecture and exercise course (atter Conditions: recommended prerequisites: basic kno quantum mechanics.	h exercises / case studies (self-study) iterarture (self-study) idance)	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Nanostructures / Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4	/ Nanophysics	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

Examination

Nanostructures / Nanophysics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Nanostructures / Nanophysics

Module PHM-0054: Chemical Phy	ysics II	6 ECTS/LP
Version 1.3.0 (since WS09/10) Person responsible for module: Prof. D PD Dr. Georg Eickerling	or. Wolfgang Scherer	
Contents: Introduction to computational che Hartree-Fock Theory DFT in a nutshell Prediction of reaction mechanism calculation of physical and chem 	ns	
Learning Outcomes / Competences: The students:		
 molecules and solid-state compo have therefore the competence to Fock and Density Functional The materials with regard to their che 	o autonomously perform simple quant eory (DFT) and to interpret the electror mical and physical properties	rpret the electronic structures in um chemical calculations using Hartree- nic structure of functional molecules and opic and to apply the acquired knowledge
Remarks: It is possible for students to do quantur molecules on a computer cluster within		and analyze electronical structures of
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content through	provided materials (self-study) iterarture (self-study)	
Conditions: It is highly recommended to complete t	he module Chemical Physics I first.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Physic Mode of Instruction: lecture Language: English Contact Hours: 3	:s II	

Learning Outcome:

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, **1996** (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

Assigned Courses:

Chemical Physics II (lecture)

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Assigned Courses:

Chemical Physics II (Tutorial) (exercise course)

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

Module PHM-0161: Coordination	Materials	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I Dr. Hana Bunzen	Dr. Dirk Volkmer	
Contents: A) Basics of coordination Chemistry		
 Historical development of coordi Structures and nomenclature rul Chemical bonds in transition me Stability of transition metal coord Characteristic reactions [3] 	es [2] tal coordination compounds [3]	
B) Selected classes of functional mate	rials	
 Bioinorganic chemistry [3] Coordination polymers / metal-o Coordination compounds in med Photochemistry of coordination of 	lical applications [3]	
Learning Outcomes / Competences: The students		
transition metal compounds),broaden their capabilities to intercoordination compounds,		redict stability and reactivity of
Workload: Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug 60 h lecture and exercise course (atter	literarture (self-study) h exercises / case studies (self-study)	
Conditions: Recommended: The lecture course is "Chemistry II"	based on the courses "Chemistry I",	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		•
Part of the Module: Coordination Ma Mode of Instruction: lecture Language: English Contact Hours: 3	aterials	

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Assigned Courses:

Coordination Materials (lecture)

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Assigned Courses:

Coordination Materials (Tutorial) (exercise course)

Examination

Coordination Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Coordination Materials

Module PHM-0113: Advanced So	lid State Materials	6 ECTS/LP
Version 1.0.0 (since WS10/11) Person responsible for module: Prof. D	r. Henning Höppe	
Contents: • Repitition of concepts • Novel silicate-analogous materia • Luminescent materials • Pigments • Heterogeneous catalysis	ls	
 acquire skills to predict the prope 		their composition and structures,
Workload: Total: 180 h 20 h studying of course content using p 80 h studying of course content throug 20 h studying of course content using I 60 h lecture and exercise course (atten Conditions: Contents of the modules Chemie I, and (Bachelor Physik, Bachelor Materialwis	h exercises / case studies (self-study) iterarture (self-study) idance) d Chemie II or Festkörperchemie	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description	State Materials	
Contents: see module description		

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

niques	ray and Neutron Diffraction Tech-	6 ECTS/L
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. D PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents: Subjects of the lecture are advanced X	-ray and neutron diffraction techniques:	
Beyond the standard model: TheHow to obtain and analyze expension	rimental charge densities sical properties from diffraction data	ction
Learning Outcomes / Competences: The students:		
neutron diffraction dataknow the basics of the <i>Quantum</i>	e on the reconstruction of accurate electro Theory of Atoms in Molecules pology of the electron density and correla	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using l 80 h studying of course content throug 20 h studying of course content using p	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: It is recommended to complete the Mo	dule PHM-0053 Chemical Physics I.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (lecture)

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (Tutorial) (exercise course)

Examination

Advanced X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced X-ray and Neutron Diffraction Techniques

Woulde Frim-0114. Follous Fulle	tional Materials	6 ECTS/LF
Version 1.0.0 (since SS11)		
Person responsible for module: Prof. D	Dr. Dirk Volkmer	
Contents:		
 Overview and historical develops 	ments	
 Structural families of porous fran 	neworks	
 Synthesis strategies 		
 Adsorption and diffusion 		
 Thermal analysis methods 		
 Catalytic properties 		
 Advanced applications and current 	ent trends	
 Integrated acquirement of soft sl Remarks: Subsequent to the lecture course, the "Porous Materials Synthesis and Char Workload: Total: 180 h 20 h studying of course content using a studying a st	students can take part in a hands-on n racterization" to practice their knowled literarture (self-study) provided materials (self-study)	
80 h studying of course content throug 60 h lecture and exercise course (atter		
Conditions:		Credit Requirements:
participation in the course Materials Chemistry		one written examination, 90 min
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted: according to the examination	

Part of the Module: Porous Functional Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Contents:

see module description

Literature:

• Paul A. Wright, Microporous Framework Solids (RSC Materials Monographs, 2008)

· selected reviews and journal articles cited on the slides

Examination

Porous Functional Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Porous Functional Materials

Module PHM-0218: Novel Method scopy	ds in Solid State NMR Spectro-	6 ECTS/LP
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. D	Dr. Leo van Wüllen	
Contents: The physical basis of nuclear magnetic	c resonance	
Pulsed NMR methods; Fourier Transfo	orm NMR	
Internal interactions		
Magic Angle Spinning		
Modern pulse sequences or how to ob	tain specific information about the struc	ture and dynamics of solid materials
Recent highlights of the application of	modern solid state NMR in materials sci	ience
Workload:		
Total: 180 h		
Conditions: none		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Novel Methods i Mode of Instruction: lecture Language: German Contact Hours: 3 Assigned Courses:	n Solid State NMR Spectroscopy	
Novel Methods in Solid State NMR S	Spectroscopy (lecture)	
Part of the Module: Novel Methods i Mode of Instruction: exercise course Language: German Contact Hours: 1	n Solid State NMR Spectroscopy (Tu	torial)
Literature: 1. M. H. Levitt, Spin Dynamics, Joh 2. H. Günther, NMR spectroscopy, 3. M.Duer, Introduction to Solid-Sta 4. D. Canet: NMR - concepts and n	Wiley 2001. ate NMR spectroscopy, Blackwell Publis	shing Ltd., 2004.
Assigned Courses:		

Examination

Novel Methods in Solid State NMR Spectroscopy

written exam / length of examination: 90 minutes

Module PHM-0164: Characteriza Characterization of Composite Materia	-	6 ECTS/LF
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. I	Dr. Markus Sause	
Contents:		
The following topics are presented:		
 Introduction to composite mater 	ials	
 Applications of composite mater 	ials	
Mechanical testing		
Thermophysical testing		
Nondestructive testing		
Learning Outcomes / Competences	:	
The students:		
 acquire knowledge in the field of 	f materials testing and evaluation of co	omposite materials.
-	•	d material models applied to composites.
 are able to independently acquir 	e further information of the scientific to	opic using various forms of information.
Workload:		
Total: 180 h		
60 h lecture and exercise course (atte		
80 h studying of course content throug)
20 h studying of course content using		
20 h studying of course content using	literarture (self-study)	
Conditions:		
Recommended: basic knowledge in m	aterials science, particularly in	
composite materials		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Characterization	n of Composite Materials	

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Characterization of Composite Materials (lecture)

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Characterization of Composite Materials (Tutorial) (exercise course)

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Materials Properties	prced Composites: Processing and	6 ECTS/L
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Frau Dr. Judith Moosburger-Will	Dr. Siegfried Horn	1
Contents:		
	es of fibers and their precursor materials es of commonly used polymeric and ceran gies	nic matrix materials
Learning Outcomes / Competences The students:	5:	
materials.are introduced to physical and other sectors.	omposite materials. echnologies of fibers, polymeric, and cera chemical properties of fibers, matrices, ar ire further knowledge of the scientific topi	d fiber reinforced materials.
Remarks.		
	E	
Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throu	endance) g provided materials (self-study) gh exercises / case studies (self-study)	
Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content using Conditions: Recommended: basic knowledge in r	endance) g provided materials (self-study) gh exercises / case studies (self-study) g literarture (self-study)	
Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content using Conditions: Recommended: basic knowledge in r organic chemistry	endance) g provided materials (self-study) gh exercises / case studies (self-study) g literarture (self-study)	Minimal Duration of the Module: 1 semester[s]
ELECTIVE COMPULSORY MODUL Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content using Conditions: Recommended: basic knowledge in r organic chemistry Frequency: each winter semester Contact Hours: 4	endance) g provided materials (self-study) gh exercises / case studies (self-study) g literarture (self-study) materials science, basic lectures in Recommended Semester:	

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Module MRM-0052: Functional P	olymers	6 ECTS/LP
Version 1.0.0 (since SoSe15)		I
Person responsible for module: Prof. D	or. Klaus Ruhland	
Contents:		
Introduction to polymer science		
 Elastomers and elastoplastic matrix 	terials	
 Memory-shape polymers 		
Piezoelectric polymers		
Electrically conducting polymers		
 Ion-conducting polymers Magnetic polymers		
 Magnetic polymers Photoresponsive polymers 		
 Polymers with second order non 	-linear optical properties	
Polymeric catalysts		
 Self-healing polymers 		
 Polymers in bio sciences> 		
Learning Outcomes / Competences		
	erials can be designed and applied to act	t in a smart manner on an external
mechanical, magnetic, electric, optical		
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter	ndance)	
20 h studying of course content using	provided materials (self-study)	
20 h studying of course content using	iterarture (self-study)	
80 h studying of course content throug	h exercises / case studies (self-study)	
Conditions:		
	035 (Chemie I), PHM-0036 (Chemie II)	
and MRM-0050 (Grundlagen der Polyr	nerchemie und -physik)	
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
requency. each summer semester	from 2.	1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	
4	regulations of the study program	
Parts of the Module		
Part of the Module: Functional Poly	ners	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Assigned Courses:		
Functional Polymers (lecture)		
Part of the Module: Functional Poly	mers (Tutorial)	
Mode of Instruction: exercise course		
Language: English		
Jan Jan Jan Jan		

Assigned Courses:

Functional Polymers (Tutorial) (exercise course)

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Module PHM-0122: Non-Destructive Testing	tive Testing	6 ECTS/LP
Version 1.0.0 (since WS14/15)		
Person responsible for module: Prof. I	Dr. Markus Sause	
Contents: Introduction to nondestructive te Visual inspection Ultrasonic testing Guided wave testing Acoustic emission analysis Thermography Radiography Eddy current testing Specialized nondestructive meth	-	
Learning Outcomes / Competences The students	:	
are introduced to important cond	f nondestructive evaluation of materials cepts in nondestructive measurement to re further knowledge of the scientific top kills	echniques,
Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	provided materials (self-study)	
Conditions: Basic knowledge on materials science	, in particular composite materials	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Non-Destructive Mode of Instruction: lecture Language: English Contact Hours: 3	e Testing	
Learning Outcome: see module description		
Contents: see module description		

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- · Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Module PHM-0168: Modern Meta	llic Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15)		,
Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents:		
Introduction		
Review of physical metallurgy		
Steels:		
• principles		
 common alloying elements martensitic transformations 		
 dual phase steels 		
 TRIP and TWIP steels 		
maraging steelelectrical steel		
 production and processing 		
Aluminium alloys:		
• 2xxx		
• 6xxx		
• 7xxx		
 Processing – creep forming, hyd 	roforming, spinforming	
Titanium alloys		
Magnesium cast alloys		
Superalloys		
Intermetallics, high entropy alloys		
Copper, brass, bronzes		
Metallic glasses		
Alloy design		
Learning Outcomes / Competences:		
Students		
 learn about all kinds of actual me basic concepts 	atallic alloys, their properties and how the	ese properties can be derived from
Workload:		-
Total: 180 h	· · · · · · · · ·	
20 h studying of course content using I 80 h studying of course content throug		
20 h studying of course content using p		
60 h lecture and exercise course (atter		
Conditions:		
Recommended: Knowledge of physica	l metallurgy and physical chemistry	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	

Parts of the Module

Part of the Module: Modern Metallic Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Cahn-Haasen-Kramer: Materials Science and Technology

Original literature

Examination

Modern Metallic Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Modern Metallic Materials

Module PHM-0196: Surfaces and	I Interfaces II: Joining processes	6 ECTS/LF
Version 1.1.0 (since WS15/16) Person responsible for module: Prof. I Dozenten: Prof. Dr. Siegfried Horn, Dr	-	,
Learning Outcomes / Competences The students		
	esion	
Workload: Total: 180 h		
Conditions: Basic knowledge on materials science Module Surfaces and Interfaces (PHM		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: any	
Parts of the Module		
Part of the Module: Surfaces and In Mode of Instruction: lecture Lecturers: Prof. Dr. Siegfried Horn Language: German Contact Hours: 3	terfaces II: Joining processes	
Contents: The following topics are treated:		
 Introduction to adhesion Role of surface and interface proposed interduction to interactions at surface Adhesion theories Surface and interface energy Surface treatment techniques Joining techniques Physical and chemical properties Applications 	aces and interfaces	
Literature: Literature, including actual scientifi	c papers and reviews, will be announce	ed at the beginning of the lecture.
Assigned Courses:		
Assigned Courses:		

Examination

Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces II: Joining processes

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course

Language: German

Contact Hours: 1

Assigned Courses:

Übung zu Surfaces and Interfaces II: Joining processes (exercise course)

Module PHM-0224: Method Course mulation Method Course: Theoretical Concepts	se: Theoretical Concepts and Si- and Simulation	8 ECTS/LF
Version 1.0.0 Person responsible for module: Prof. D	r. Liviu Chioncel	1
	ods (computational algorithms) for class . The following common applications wil	
 Monte-Carlo integration, stochas Feynman path integrals: the conr Oder and disorder in spin system 	nection between classical and quantum	systems
The students are able to present	ining numerical solutions to problems to (graphically), discuss and analyze the r formulatind and carrying out a collabora	esults
Remarks: The number of students will be limited t	to 8.	
Workload: Total: 240 h 90 h preparation of presentations (self- 60 h preparation of written term papers 60 h studying of course content (self-st 90 h (attendance)	s (self-study)	
Conditions: Knowledge of the programming langua taught in the modul PHM-0041. Requir in physics: Classical Mechanics (Newto Thermodynamics and Quantum Mecha	ements to understand basic concepts on, Lagrange), Electrodynamics,	Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English / German

Contact Hours: 2

Contents:

Concepts of classical and quantum statistical physics:

- the meaning of sampling, random variables, ergodicity
- equidistribution, pressure, temperature
- path integrals, quantum statistics, enumeration, cluster algorithms

Literature:

- 1. Werner Krauth, Algorithms and Computations (Oxford University Press, 2006)
- 2. R. H. Landau, A Survey of Computational Physics (Princeton Univ. Press, 2010)

Assigned Courses:

Method Course: Theoretical Concepts and Simulation (lecture)

Part of the Module: Method Course: Theoretical Concepts and Simulation (Practical Course)

Mode of Instruction: internship

Language: English / German

Contact Hours: 4

Contents:

see above

Literature:

see above

Assigned Courses:

Method Course: Theoretical Concepts and Simulation (Practical Course) (internship)

Examination

Method Course: Theoretical Concepts and Simulation

report / work period for assignment: 4 weeks

Description:

The requirement for the credit points is based on a programming project carried out in a team of 2-3 students. The final report contains the formulation and a theoretical introduction into the problem, the numerical implementation, and the presentation of the results.

Module PHM-0166: Carbon-base als)	d functional Materials (Carboteri-	6 ECTS/LF
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	or. Dirk Volkmer	
Contents: Introduction to carbon allotropes and 	d porous carbon materials [4]	
2. Physical properties of fullerenes, ca	rbon nanotubes and graphene [4]	
3. Solid state NMR spectroscopy of ca	rbon materials [4]	
4. Metal carbides [4]		
5. Carbon thin films and coatings [4]		
6. Manufacturing and processing techr	ology of carbon fibres [4]	
7. Carbon-fibre reinforced polymer con	nposites [4]	
8. Carbon-fibre reinforced aluminium (I	Metal Matrix Composites, MMC) [4]	
9. Energy storage in carbon materials	[4]	
10. Carbon-based materials for opto-el	lectronics [4]	
11. Quantum transport phenomena rel	ating to carbon materials [4]	
12. a) Manipulating heat flow with carb	on-based electronic analogs: phononics	in place of electronics [2]
12. b) Carbon-based spintronics [2]		
13. Fabrication and processing of carb	on-based nanostructures [4]	
Learning Outcomes / Competences: The students:		
-		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: none		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	

Parts of the Module

Part of the Module: Carbon-based functional Materials (Carboterials)

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

will be announced by the lecturers

Examination

Carbon-based functional Materials (Carboterials)

written exam / length of examination: 120 minutes

Examination Prerequisites:

Carbon-based functional Materials (Carboterials)

Module PHM-0174: Theoretical C	Concepts and Simulation	6 ECTS/LP
Theoretical Concepts and Simulation		
Version 1.0.0 (since WS09/10) Person responsible for module: Prof. [
Contents:		
 Introduction: operating systems, Basic numerical methods: interp 	programming languages, data visualiza olation, integration Equations (e.g., diffusion equation, Schr	
Learning Outcomes / Competences: The students:		
 know the principal concepts of the relevant in material science, are able to solve simple problem have the expertise to find the nuverical results, Integrated acquirement of soft slip 	-	e codes and to present the results, n problem and to judge the quality and
Remarks: Links to software related to the course • http://www.bloodshed.net/ • http://www.cplusplus.com/doc/tu • http://www.cygwin.com/ • http://xmd.sourceforge.net/down	torial/	
 http://www.rasmol.org/ http://felt.sourceforge.net/		
Workload: Total: 180 h 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atten	iterarture (self-study) provided materials (self-study)	
Conditions: Recommended: basic knowledge of qu and numerical methods as well as of a		Credit Requirements: project work in small groups, including a written summary of the results (ca. 10-20 pages) as well as an oral presentation
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Tao Pang, An Introduction to Computational Physics (Cambridge University Press)
- J. M. Thijssen, Computational Physics (Cambridge University Press)
- Koonin, Meredith, Computational Physics (Addison-Weseley)
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press)
- W. H. Press et al, Numerical Recipes (Cambridge University Press)

Part of the Module: Theoretical Concepts and Simulation (Project)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Theoretical Concepts and Simulation

seminar / length of examination: 30 minutes

Examination Prerequisites:

Theoretical Concepts and Simulation

Module PHM-0058: Organic Sem Organic Semiconductors	niconductors	6 ECTS/LF
-		
Version 1.0.0 (since WS09/10) Person responsible for module: Prof. [Dr. Wolfgang Brütting	
Contents:		
Basic concepts and applications of org	anic semiconductors	
Introduction		
 Materials and preparation 		
Structural properties		
Electronic structure		
Optical and electrical properties		
Devices and Applications		
Organic metals		
 Light-emitting diodes 		
Field-effect transistors		
Solar cells and laser		
Learning Outcomes / Competences	:	
The students:		
functioning of components,and have the competence to corr	sification of the materials taking into acco mprehend and attend to current problems kills: practicing technical English, working	s in the field of organic electronics.
Workload:		
Total: 180 h		
40 h studying of course content using 40 h studying of course content using		
	hexercises / case studies (self-study)	
60 h lecture and exercise course (atter		
Conditions:		
t is strongly recommended to complet	e the module solid-state physics first. In	
addition, knowledge of molecular phys	ics is desired.	
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		

Language: English

Contact Hours: 3

Learning Outcome:

see module description

Contents:

see module description

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- W. Brütting (editor): Physics of Organic Semiconductors (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)

Assigned Courses:

Organic Semiconductors (lecture)

Part of the Module: Organic Semiconductors (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Organic Semiconductors (Tutorial) (exercise course)

Examination

Organic Semiconductors

written exam / length of examination: 90 minutes

Examination Prerequisites:

Organic Semiconductors

Module PHM-0066: Supercondu	ctivity	6 ECTS/LP
Version 1.0.0 (since WS11/12)		
Person responsible for module: PD D	r. Reinhard Tidecks	
 Phenomenological Thermodyna Ginzburg-Landau Theory Microscopic Theories Fundamental Experiments on the Josephson-Effects High Temperature Superconductivity Learning Outcomes / Competences The students: will get an introduction to super by a presentation of experiment 	the Superconducting State, an Overview amics and Electrodynamics of the SC ne Nature of the Superconducting State ctors	
the superconducting state, to ex	to the basic concepts of the main phenom cplain the experimental observations. /e list of further reading will be supplied.	eno-logical and microscopic theories of
Total: 180 h 60 h lecture and exercise course (atte 80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using	gh exercises / case studies (self-study) provided materials (self-study)	
 Conditions: Physik IV – Solid-state physics Theoretical physics I-III 		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Superconductive Mode of Instruction: lecture Language: English Contact Hours: 4	vity	

Learning Outcome:

see module description

Contents:

see module description

Literature:

- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola , 2004)
- Weitere Literatur wird in der Vorlesung angegeben

Examination

Superconductivity

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Superconductivity

Module PHM-0060: Low Tempe	erature Physics	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: PD [Dr. Reinhard Tidecks	
Contents: • Introduction		
Thermodynamic fundamentals		
Gas liquification		
Properties of liquid helium		
Cryogenic engineering		
 have acquired the theoretical k 	es: natter at low temperatures and the correspondence of the corre	easurements,
Workload: Total: 180 h 60 h lecture and exercise course (att 80 h studying of course content throu 20 h studying of course content using	ugh exercises / case studies (self-study)	
20 h studying of course content using		
Conditions: Physik IV - Solid-state physics		
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Low Temperat Mode of Instruction: lecture Language: English Contact Hours: 3	ure Physics	
Learning Outcome: see module description		

Contents:

- Introduction
 - History, methods, realizations, and significance
- Thermodynamic fundamentals
 - Temperature, working cycles, real gases, Joul-Thomson-Effect
- · Gas liquification
 - Air, hydrogen, helium
 - Separation of Oxygen and nitrogen
 - Storage and transfer of liquefied gases, superinsulation
- · Properties of liquid helium
 - Production and thermodynamic properties of4He and3He
 - Phase diagrams (4He,3He)
 - Superfluidity of4He
 - Experiments, Two-Fluid-Model
 - Bose-Einstein-Condensation
 - Excitation spectrum, critical velocity
 - Rotating Helium
 - Normal and superfluid3He
 - -4He /3He-mixtures
- Cryogenic engineering
 - Bath-Cryostats (Helium-4, Helium-3),
 - -4He /3He-Dilution-Refrigerators
 - Pomeranchuck-Cooling
 - Adiabatic demagnetization
 - Primary and secondary thermometers

Literature:

- C. Enss, S. Hunklinger, Tieftemperaturphysik (Springer)
- F. Pobell, Matter and Methods at Low Temperatures (Springer)

Part of the Module: Low Temperature Physics (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Low Temperature Physics oral exam / length of examination: 30 minutes Examination Prerequisites:

Low Temperature Physics

hesis of porous functional materials, ith special emphasis laid upon sorption
ith special emphasis laid upon sorption
je
Credit Requirements:
one written examination, 90 min
Minimal Duration of the Module: 1 semester[s]

Part of the Module: Porous Functional Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Contents:

see module description

Literature:

• Paul A. Wright, Microporous Framework Solids (RSC Materials Monographs, 2008)

· selected reviews and journal articles cited on the slides

Examination

Porous Functional Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Porous Functional Materials

	s for Physicists and Materials Sci-	6 ECTS/LP
entists Electronics for Physicists and Mate	erials Scientists	
Version 1.0.0 (since WS09/10)		
Person responsible for module: An	dreas Hörner	
have skills in easy circuit deshave expertise in independe	and opamp circuits ation circuits ks	log and digital electronics, culate and develop easy circuits.
thinking and working. Workload: Total: 180 h 60 h lecture and exercise course (a 20 h studying of course content us 20 h studying of course content us	ing literarture (self-study)	erimental results, and interdisciplinary
Conditions:		
Frequency: each semester	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
	or Physicists and Materials Scientists	
Learning Outcome: see module description		
Contents: see module description		

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in the lecture)

Assigned Courses:

Electronics for Physicists and Materials Scientists (lecture)

Examination

Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Electronics for Physicists and Materials Scientists

Module PHM-0068: Spintronics		6 ECTS/L
Version 1.0.0 (since SoSe14)		
Person responsible for module: Dr. Ge	rman Hammerl	
Contents:		
 Introduction into magnetism 		
 Basic spintronic effects and devi 	ces	
 Novel materials for spintronic ap 		
Spin-sensitive experimental met		
Semiconductor based spintronic	S	
Learning Outcomes / Competences		
The students:		
	s of magnetic materials, the basic spintr	onic effects, and the related device
structures,		
	materials with respect to their applical	
 and have the competence to dea spintronics largely autonomous. 	al with current problems in the field of s	emi-conductor and metal based
Workload: Total: 180 h		
60 h lecture and exercise course (atter	dance)	
80 h studying of course content throug		
20 h studying of course content using		
20 h studying of course content using		
Conditions:		
none		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Spintronics		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		

Learning Outcome:

see module description

Contents:

see module description

Literature:

- N. W. Ashcroft, N. D. Mermin, Solid State Physics, Cengage Learning (2011), ISBN: 81-315-0052-7
- C. Felser, G. H. Hechter, Spintronics From Materials to Devices, Springer (2013), ISBN: 978-90-481-3831-9
- S. Bandyopadhyay, M. Cahay, Introduction to Spintronics, CRC Press (2008), ISBN: 978-0-9493-3133-6

Part of the Module: Spintronics (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Spintronics

written exam / length of examination: 90 minutes

Examination Prerequisites:

Spintronics

Person responsible for module: Dr. German Hammer! Contents: Layer growth Thin film technology Analysis of thin films Properties and applications of thin films Learning Outcomes / Competences: The students: Know methods of thin film technology and material properties and applications of thin films, have acquired skills of grouping the various technologies for producing thin layers with respect to their propertie and applications, and have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iterature (self-study) 20 h studying of course content using iteratu	Module PHM-0057: Physics of	Thin Films	6 ECTS/LP
Contents: Layer growth • Thin film technology Analysis of thin films • Properties and applications of thin films Learning Outcomes / Competences: The students: • know methods of thin film technology and material properties and applications of thin films, • have acquired skills of grouping the various technologies for producing thin layers with respect to their propertie and applications, and • have the competence to deal with current problems in the field of thin film technology largely autonomous. • Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semes	Version 1.0.0 (since WS09/10) Person responsible for module: Dr.	German Hammerl	
Layer growth Thin film technology Analysis of thin films Properties and applications of thin films Learning Outcomes / Competences: The students: know methods of thin film technology and material properties and applications of thin films, have acquired skills of grouping the various technologies for producing thin layers with respect to their propertie and applications, and have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literature (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Physics of Thin Films Mode of Instruction: lecture Language: English	•		
Thin film technology Analysis of thin films Properties and applications of thin films Learning Outcomes / Competences: The students: know methods of thin film technology and material properties and applications of thin films, have acquired skills of grouping the various technologies for producing thin layers with respect to their propertie and applications, and have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using iteratrure (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using the field Semester: from 2. Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Contact Hours: 4 Parts of the Module Physics of Thin Films Mode of Instruction: lecture Language: English			
Analysis of thin films Properties and applications of thin films Learning Outcomes / Competences: The students: know methods of thin film technology and material properties and applications of thin films, have acquired skills of grouping the various technologies for producing thin layers with respect to their propertie and applications, and have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course course (attendance) Conditions: none Frequency: every 3rd semester from 2. According to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English			
The students:	,	thin films	
 know methods of thin film technology and material properties and applications of thin films, have acquired skills of grouping the various technologies for producing thin layers with respect to their propertie and applications, and have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester from 2. Repeat Exams Permitted:	Learning Outcomes / Competenc	es:	
 have acquired skills of grouping the various technologies for producing thin layers with respect to their properties and applications, and have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, ability to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester from 2. Repeat Exams Permitted:	The students:		
and applications, and have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literatrure (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester from 2. Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	 know methods of thin film tecl 	nnology and material properties and app	lications of thin films,
 have the competence to deal with current problems in the field of thin film technology largely autonomous. Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester from 2. Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Parts of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	 have acquired skills of grouping 	ng the various technologies for producing	g thin layers with respect to their properties
Integrated acquirement of soft skills: practicing technical English, working with English specialist literature, abilit to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Parts of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	and applications, and		
to interpret experimental results. Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	 have the competence to deal 	with current problems in the field of thin	film technology largely autonomous.
Workload: Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester Recommended Semester: Minimal Duration of the Module: 1 semester[s] Contact Hours: Repeat Exams Permitted: 4 according to the examination regulations of the study program Parts of the Module Parts of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	 Integrated acquirement of sof 	t skills: practicing technical English, work	king with English specialist literature, ability
Total: 180 h 80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	to interpret experimental resu	lts.	
80 h studying of course content through exercises / case studies (self-study) 20 h studying of course content using provided materials (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Minimal Duration of the Module: 1 semester[s] Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	Workload:		
20 h studying of course content using literarture (self-study) 20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module: Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	Total: 180 h		
20 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Minimal Duration of the Module: 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	80 h studying of course content thro	ough exercises / case studies (self-study)
60 h lecture and exercise course (attendance) Conditions: none Frequency: every 3rd semester from 2. Minimal Duration of the Module: 1 semester[s] Contact Hours: 4 Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	20 h studying of course content usir	ng literarture (self-study)	
Conditions: none Frequency: every 3rd semester Recommended Semester: from 2. Minimal Duration of the Module: 1 semester[s] 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Physics of Thin Films Mode of Instruction: lecture Language: English	20 h studying of course content usir	ng provided materials (self-study)	
none Recommended Semester: Minimal Duration of the Module: Frequency: every 3rd semester from 2. Minimal Duration of the Module: from 2. 1 semester[s] Contact Hours: A Repeat Exams Permitted: 4 according to the examination regulations of the study program regulations of the study program	60 h lecture and exercise course (at	ttendance)	
Frequency: every 3rd semester Recommended Semester: Minimal Duration of the Module: from 2. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	Conditions:		
from 2. 1 semester[s] Contact Hours: Repeat Exams Permitted: 4 according to the examination regulations of the study program regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	none		
from 2. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	Frequency: every 3rd semester	Recommended Semester:	Minimal Duration of the Module:
4 according to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English		from 2.	1 semester[s]
4 according to the examination regulations of the study program Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	Contact Hours:	Repeat Exams Permitted:	
Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English			
Parts of the Module Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English	-	-	
Part of the Module: Physics of Thin Films Mode of Instruction: lecture Language: English			
Mode of Instruction: lecture Language: English	Parts of the Module		
Language: English	Part of the Module: Physics of Th	in Films	
	Mode of Instruction: lecture		
Contact Hours: 4	Language: English		
	Contact Hours: 4		
Learning Outcome:			

see module description

Contents:

see module description

Literature:

- H. Frey, G. Kienel, Dünnschichttechnologie (VDI Verlag, 1987)
- H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer Verlag, 2001)
- A. Wagendristel, Y. Wang, An Introduction to Physics and Technology of Thin Films (World Scientific Publishing, 1994)
- M. Ohring, The Materials Science of Thin Films (Academic Press, 1992)

Examination

Physics of Thin Films written exam / length of examination: 90 minutes Examination Prerequisites:

Physics of Thin Films

Module PHM-0056: Ion-Solid Inte	eraction	6 ECTS/LP
Version 1.0.0 (since WS09/10)		
Person responsible for module: apl. P	rof. Dr. Helmut Karl	
 Fundamentals of atomic collision collision models) Ion-induced modification of solid 	and technological application, principles) n processes (scattering, cross-sections, e ls (integrated circuit fabrication with empl ion milling and etching (RIE), sputtering,	nasis on ion induced phenomena, ion
Learning Outcomes / Competences	:	
The students:		
 have the competence to work exsolid state bodies. Integrated acquirement of soft s Workload: Total: 180 h		••
20 h studying of course content using 20 h studying of course content using		
80 h studying of course content throug		
60 h lecture and exercise course (atte		
Conditions: Basic Courses in Physics I–IV, Solid S	State Physics, Nuclear Physics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Ion-Solid Interac Mode of Instruction: lecture Language: English Contact Hours: 3	ction	
Learning Outcome: see module description		
Contents: see module description		

Literature:

- R. Smith, Atomic and ion collisions in solids and at surfaces (Cambridge University Press, 1997)
- E. Rimini, Ion implantation: Basics to device fabrication (Kluwer, 1995)
- W. Eckstein: Computer Simulation of Ion-Solid Interactions (Springer, 1991)
- H. Ryssel, I. Ruge: Ionenimplantation (Teubner, 1978)
- Y. H. Ohtsuki: Charged Beam Interaction with Solids (Taylor & Francis, 1983)
- J. F. Ziegler (Hrsg.): The Stopping and Range of Ions in Solids (Pergamon)
- R. Behrisch (Hrsg.): Sputtering by Particle Bombardment (Springer)
- M. Nastasi, J. K. Hirvonen, J. W. Mayer: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, 1996)
- http://www.SRIM.org

Assigned Courses:

Ion-Solid Interaction (lecture)

Part of the Module: Ion-Solid Interaction (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Ion-Solid Interaction (Tutorial) (exercise course)

Examination

Ion-Solid Interaction

written exam / length of examination: 90 minutes

Examination Prerequisites:

Ion-Solid Interaction

Applied Magnetic Materials and Meth	gnetic Materials and Methods nods	6 ECTS/LP
Version 1.0.0 (since WS14/15)		
Person responsible for module: Prof.	Dr. Manfred Albrecht	
Contents:		
Basics of magnetism Forrimognete, permanent magnete	acto	
 Ferrimagnets, permanent magi Magnetic nanoparticles 	lets	
Superparamagnetism		
Exchange bias effect		
 Magnetoresistance, sensors 		
Experimental methods (e.g. Mo	oßbauer Spectroscopy, mu-SR)	
Learning Outcomes / Competence	s:	
The students know the basic te		
	of basic physical relations and their appl	
	jualitative observations, interpret quant	
	hysical effects of chosen magnetic mate skills: autonomous working with special	-
	city for teamwork, ability to document ex	
thinking and working.		
Workload:		
Total: 180 h		
10(a). 100 11		
	igh exercises / case studies (self-study)	
80 h studying of course content throu 20 h studying of course content using	provided materials (self-study)	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using	g provided materials (self-study) g literarture (self-study)	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte	g provided materials (self-study) g literarture (self-study)	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions:	g provided materials (self-study) g literarture (self-study)	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics	g provided materials (self-study) g literarture (self-study) endance)	
	g provided materials (self-study) g literarture (self-study)	Minimal Duration of the Module: 1 semester[s]
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester:	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours:	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1.	
30 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 50 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours:	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted:	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magne	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
30 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 50 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magne Mode of Instruction: lecture	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magne Mode of Instruction: lecture Language: English	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magne Mode of Instruction: lecture Language: English Contact Hours: 3	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magne Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magne Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content throu 20 h studying of course content using 20 h studying of course content using 60 h lecture and exercise course (atte Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied Magne Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description Contents:	g provided materials (self-study) g literarture (self-study) endance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Applied Magnetic Materials and Methods (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Applied Magnetic Materials and Methods

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Applied Magnetic Materials and Methods

Module PHM-0052: Solid Stat Radiation and Neutrons	te Spectroscopy with Synchrotron	6 ECTS/LP
Solid State Spectroscopy with Syr	nchrotron Radiation and Neutrons	
Version 1.0.0 (since WS09/10)		1
Person responsible for module: Pr	of. Dr. Christine Kuntscher	
Contents:		
-	у	meter, interferometer [2]
Learning Outcomes / Competen		
The students:		
 have acquired the skills of for the field of solid state spectr 	al with current problems in solid state spectro methods for application.	spectroscopy and can apply these in
Workload:		
20 h studying of course content us	rough exercises / case studies (self-study)	
Conditions:		
basic knowledge in solid-state phy		
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Solid State S Mode of Instruction: lecture Language: English Contact Hours: 3	Spectroscopy with Synchrotron Radiation	and Neutrons
Learning Outcome: see module description		

Contents:

see module description

Literature:

- H. Kuzmany, Solid State Spectroscopy (Springer)
- N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston)
- J. M. Hollas, Modern Spectroscopy

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (lecture)

Part of the Module: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial) (exercise course)

Examination

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

Module PHM-0051: Biophysi Biophysics and Biomaterials	cs and Biomaterials	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: D	r. Stefan Thalhammer	
Contents: • Radiation Biophysics • Microfluidics • Membranes • Membranal transport		
Learning Outcomes / Competer The students:	ices:	
 learn models of the (bio)poly neuronal networks, adapt skills in the independent translate a biological oberset Integrated acquirement of statement of statement	and phenomena of biological physics, ymer-theory, microfluidic, radiation biophys ent processing of problems and deal with co ervation into a physical question. oft skills: autonomous working with speciali pacity for teamwork, ability to document ex	urrent literature. They will be able to st literature in english, acquisition of
	sing provided materials (self-study) rough exercises / case studies (self-study)	
Conditions: Mechanics, Thermodynamics, Sta Molecular Biology	tistical Physics, basic knowledge in	
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Biophysics Mode of Instruction: lecture Language: English Contact Hours: 3	and Biomaterials	
Learning Outcome: see module description		

Contents:
Radiation Biophysics
 Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics
 Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry Membranes
 Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model Lipid membranes and biological membranes, membrane elasticity Membranal transport
 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics
 Literature: T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes
Assigned Courses:
Biophysics and Biomaterials (lecture)
Part of the Module: Biophysics and Biomaterials (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1
Assigned Courses:
Biophysics and Biomaterials (Tutorial) (exercise course)
Examination

Biophysics and Biomaterials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Biophysics and Biomaterials

Module PHM-0160: Dielectric and Dielectric and Optical Materials	d Optical Materials	6 ECTS/LP
Version 1.1.0 (since SoSe15) Person responsible for module: Prof. Dr. Joachim Deisenhofer		
Contents: Optical materials:		
absorption) • Anisotropic media, linear optics		
measurementsDynamic processes in dielectric	ies, broadband dielectric spectroscopy, materials: relaxation processes, phenom d matter: liquids, glasses, plastic crystals	enological models
 Charge transport: hopping conductivity, universal dielectric response, ionic conductors Maxwell-Wagner relaxations: equivalent-circuits, applications (supercapacitors), colossal-dielectric-constant materials Ferroelectricity: dielectric properties, polarization, relaxor ferroelectrics, applications Multiferroic materials: mechanisms, materials, applications 		
	ectromagnetic wave propagation and hav omena. They are able to analyze materia	-
Remarks: Elective compulsory module		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using l 80 h studying of course content throug 20 h studying of course content using p	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: Basic knowledge of solid state physics		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Dielectric and Optical Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Assigned Courses:

Dielectric and Optical Materials (lecture)

Examination

Dielectric and Optical Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Dielectric and Optical Materials

Module PHM-0059: Magnetis	sm	6 ECTS/LP
Version 1.0.0 (since WS09/10) Person responsible for module: D)r. Hans-Albrecht Krug von Nidda	
Contents:		
 Exchange interaction and r Magnetic anisotropy and m Thermodynamics of magnetic domains and dom 	agnetoelastic effects etic systems and applications nain walls nd micro magnetic treatment tism	
for their description, like mehave the ability to classify or interpretation, and	and phenomena of magnetic materials and t ean-field theory, exchange interactions and lifferent magnetic phenomena and to apply pendently to treat fundamental and typical to soft skills.	micro magnetic models, the corresponding models for their
20 h studying of course content u		
Conditions: basics of solid-state physics and	quantum mechanics	
Frequency: annually	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3		
Learning Outcome: see module description		

Contents:

see module description

Literature:

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Assigned Courses:

Magnetism (lecture)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Magnetism (Tutorial) (exercise course)

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Module PHM-0048: Physics and	Technology of Semiconductor	6 ECTS/LP
Devices Physics and Technology of Semicondu	uctor Devices	
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. D	Dr. Hubert J. Krenner	
Contents:	_	
 Basic properties of semiconductor Semiconductor diodes and trans Semiconductor technology 	ors (electronic bandstructure, doping, car istors	rier excitations and carrier transport)
 excitations, and carrier transport Application of developed concept semiconductors. Application of these concepts to such as diodes and transistors Knowledge of the technologically Integrated acquisition of soft skill 	nd semiconductor physics such as electr	describe the basic properties of principles of semiconductor devices ductor micro- and nanofabrication. erature in English, acquisition of
Total: 180 h 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content throug 60 h lecture and exercise course (atter Conditions:	iterarture (self-study) h exercises / case studies (self-study)	
recommended prerequisites: basic kno physics and quantum mechanics.	wledge in solid state physics, statistical	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics and Tec Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	hnology of Semiconductor Devices	
see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Assigned Courses:

Physics and Technology of Semiconductor Devices (lecture)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Assigned Courses:

Physics and Technology of Semiconductor Devices (Tutorial) (exercise course)

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructures / Nanostructures	res / Nanophysics	6 ECTS/LP
Version 1.1.0 (since WS09/10)		
Person responsible for module: Prof. I	Dr. Hubert J. Krenner	
2. Magnetotransport in low-dimens	vires and dots, low dimensional electron ional systems, Quanten-Hall-Effect, Qua ells and quantum dots and their applicati	ntized conductance
 Profound knowledge of low-dimension novel functional devices for high Knowledge of different fabricatio Application of these concepts to Integrated acquirement of soft sl 	ental concepts in modern nanoscale scient ensional semiconductor structures and he -frequency electronics and optoelectronic n approaches using bottom-up and top-oc tackle present problems in nanophysics kills: autonomous working with specialist by for teamwork, ability to document expe	ow these systems can be applied for cs down techniques literature in English, acquisition of
Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: recommended prerequisites: basic know quantum	h exercises / case studies (self-study) literarture (self-study) ndance)	
mechanics. Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Nanostructures Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4	/ Nanophysics	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)

Examination

Nanostructures / Nanophysics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Nanostructures / Nanophysics

Module PHM-0054: Chemical Phy	ysics II	6 ECTS/LP
Version 1.3.0 (since WS09/10) Person responsible for module: Prof. D PD Dr. Georg Eickerling	or. Wolfgang Scherer	
Contents: Introduction to computational che Hartree-Fock Theory DFT in a nutshell Prediction of reaction mechanism calculation of physical and chem 	ns	
Learning Outcomes / Competences: The students:		
 molecules and solid-state compo have therefore the competence to Fock and Density Functional The materials with regard to their che 	o autonomously perform simple quant eory (DFT) and to interpret the electror mical and physical properties	rpret the electronic structures in um chemical calculations using Hartree- nic structure of functional molecules and opic and to apply the acquired knowledge
Remarks: It is possible for students to do quantur molecules on a computer cluster within		and analyze electronical structures of
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content through	provided materials (self-study) iterarture (self-study)	
Conditions: It is highly recommended to complete t	he module Chemical Physics I first.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Physic Mode of Instruction: lecture Language: English Contact Hours: 3	:s II	

Learning Outcome:

see module description

- I. N. Levine, Quantum Chemistry, Pearson, 7th ed 2013.
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Dover, **1996** (EbookCentral ebook).
- E. G. Lewars, Computational Chemistry, Springer, 2011.
- D. C. Young, Computational Chemistry: A practical guide for applying techniques to real world problems, Wiley ebook, **2002**.
- R. A. van Santen, Ph. Sautet, Computational Methods in Catalysis and Materials Science, Wiley ebook, 2009.
- P. Popelier, Atoms in Molecules: An Introduction, Pearson Education Limited, 2000.
- A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc. Pittsburg, PA.

Assigned Courses:

Chemical Physics II (lecture)

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Assigned Courses:

Chemical Physics II (Tutorial) (exercise course)

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

Module PHM-0161: Coordination	Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I Dr. Hana Bunzen	Dr. Dirk Volkmer	
Contents: A) Basics of coordination Chemistry		
 Historical development of coordi Structures and nomenclature rul Chemical bonds in transition me Stability of transition metal coordi Characteristic reactions [3] 	es [2] tal coordination compounds [3]	
B) Selected classes of functional mate	rials	
 Bioinorganic chemistry [3] Coordination polymers / metal-o Coordination compounds in med Photochemistry of coordination of 	lical applications [3]	
Learning Outcomes / Competences: The students		
coordination compounds,		
Workload:		
Total: 180 h 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug 60 h lecture and exercise course (atter	literarture (self-study) h exercises / case studies (self-study)	
Conditions: Recommended: The lecture course is "Chemistry II"	based on the courses "Chemistry I",	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	*	
Part of the Module: Coordination Ma Mode of Instruction: lecture Language: English Contact Hours: 3	aterials	

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Assigned Courses:

Coordination Materials (lecture)

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Assigned Courses:

Coordination Materials (Tutorial) (exercise course)

Examination

Coordination Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Coordination Materials

Module PHM-0113: Advanced So	blid State Materials	6 ECTS/LP
Version 1.0.0 (since WS10/11)		
Person responsible for module: Prof. I	Dr. Henning Höppe	
Contents: Repitition of concepts Novel silicate-analogous materia Luminescent materials Pigments Heterogeneous catalysis 	als	
 Learning Outcomes / Competences The students are aware of corre acquire skills to predict the prop 	lations between composition, structures erties of chemical compounds, based or e potential of functional materials for futu- roperties of these materials.	n their composition and structures,
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atte	h exercises / case studies (self-study) literarture (self-study)	
Conditions: Contents of the modules Chemie I, an (Bachelor Physik, Bachelor Materialwi	d Chemie II or Festkörperchemie	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Advanced Solid Mode of Instruction: lecture Language: English Contact Hours: 4	State Materials	
Learning Outcome: see module description		

- A. West, Solid State Chemistry and Its Applications
- L. Smart, E. Moore, Solid State Chemistry
- Scripts Solid State Chemistry and Chemistry I and II

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

Module PHM-0218: Novel Metho scopy	ds in Solid State NMR Spectro-	6 ECTS/LP
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. [Dr. Leo van Wüllen	
Contents: The physical basis of nuclear magnetic		
Pulsed NMR methods; Fourier Transfo		
Internal interactions		
Magic Angle Spinning		
Modern pulse sequences or how to ob	tain specific information about the stru	cture and dynamics of solid materials
Recent highlights of the application of		-
Workload: Total: 180 h		
Conditions: none		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Novel Methods i Mode of Instruction: lecture Language: German Contact Hours: 3	n Solid State NMR Spectroscopy	
Assigned Courses:		
Novel Methods in Solid State NMR S	Spectroscopy (lecture)	
Part of the Module: Novel Methods i Mode of Instruction: exercise course Language: German Contact Hours: 1		utorial)
Literature: 1. M. H. Levitt, Spin Dynamics, Joh 2. H. Günther, NMR spectroscopy, 3. M.Duer, Introduction to Solid-Sta 4. D. Canet: NMR - concepts and r	Wiley 2001. ate NMR spectroscopy, Blackwell Pub	lishing Ltd., 2004.
Assigned Courses:		

Examination

Novel Methods in Solid State NMR Spectroscopy

written exam / length of examination: 90 minutes

Module PHM-0167: Oxidation and Corrosion	6 ECTS/LP
Version 1.0.0 (since SoSe15)	· ·
Person responsible for module: Prof. Dr. Ferdinand Haider	_
Contents: Introduction	
Review of thermodynamics	
Chemical equilibria	
Electrochemistry	
Electrode kinetics	
High temperature oxidation	
Localized corrosion	
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 	
Water and seawater corrosion	
Corrosion monitoring	
Corrosion properties of specific materials	
Specific corrosion problems in certain branches	
Oil and Gas industryAutomobile industryFood industry	
Corrosion protection	
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 	
Learning Outcomes / Competences: The students:	
 know the the fundamental basics, mechanics, and types of corrosion pr obtain specific knowledge of one type of corrosion. 	ocesses,
Workload: Total: 180 h 120 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance)	
Conditions: Recommended: good knowledge in materials science, basic knowledge in physical chemistry	Credit Requirements: written exam (90 min)

Frequency: each winter semester	Recommended Semester: from 3.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Schütze: Corrosion and Environmental Degradation

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Oxidation and Corrosion

written exam / length of examination: 90 minutes

Examination Prerequisites:

Oxidation and Corrosion

Module PHM-0164: Characteriza Characterization of Composite Materia	· · · · · · · · · · · · · · · · · · ·	6 ECTS/LF
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Markus Sause	
Contents: The following topics are presented:		
 Introduction to composite materi Applications of composite materi Mechanical testing Thermophysical testing Nondestructive testing 		
Learning Outcomes / Competences The students:	:	
are introduced to important conc		omposite materials. I material models applied to composites. opic using various forms of information.
Workload: Total: 180 h 60 h lecture and exercise course (atter 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using	h exercises / case studies (self-study) provided materials (self-study))
Conditions: Recommended: basic knowledge in m composite materials	aterials science, particularly in	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	
	regulations of the study program	

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Characterization of Composite Materials (lecture)

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Characterization of Composite Materials (Tutorial) (exercise course)

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Materials Properties	orced Composites: Processing and	6 ECTS/L
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Frau Dr. Judith Moosburger-Will	Dr. Siegfried Horn	J
Contents:		
	es of fibers and their precursor materials es of commonly used polymeric and cerar ogies	nic matrix materials
Learning Outcomes / Competences The students:	s:	
materials.are introduced to physical and	chemical properties of fibers, matrices, and	d fiber reinforced materials.
		c using various forms of information.
Remarks:		c using various forms of information.
Remarks: ELECTIVE COMPULSORY MODUL Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throu	E endance) g provided materials (self-study) igh exercises / case studies (self-study)	c using various forms of information.
Remarks: ELECTIVE COMPULSORY MODUL Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content throu 20 h studying of course content using Conditions: Recommended: basic knowledge in r	E endance) g provided materials (self-study) igh exercises / case studies (self-study) g literarture (self-study)	c using various forms of information.
Remarks: ELECTIVE COMPULSORY MODUL Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content using Conditions: Recommended: basic knowledge in r organic chemistry	E endance) g provided materials (self-study) igh exercises / case studies (self-study) g literarture (self-study)	Minimal Duration of the Module: 1 semester[s]
Remarks: ELECTIVE COMPULSORY MODUL Workload: Total: 180 h 60 h lecture and exercise course (atte 20 h studying of course content using	E endance) g provided materials (self-study) ugh exercises / case studies (self-study) g literarture (self-study) materials science, basic lectures in Recommended Semester:	Minimal Duration of the Module:

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Version 1.0.0 (since SoSe15) Person responsible for module: Prof. Dr Ing. Johannes Schilp Contents: The following topics are treated:	Dr. Siegfried Horn	
he following topics are treated:		
 Statics and dynamics of objects Transmissions and mechanism Tension, shear and bending modeling Hydrostatics Hydrodynamics Strength of materials and solid Instrumentation and measurem Mechanical design (including kited) 	s oment mechanics ent	
 Learning Outcomes / Competences The students understand and are able Engineering applications Mechanical testing Instrumentation Mechanical design 	e to apply basic concepts of physics an	d materials science to:
otal: 180 h		
Conditions: one		
requency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	-	

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Part of the Module: Mechanical Engineering (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Introduction to Mechanical Engineering

written exam / length of examination: 90 minutes

Examination Prerequisites:

Introduction to Mechanical Engineering

Module MRM-0052: Functional P	olymers	6 ECTS/LP
Version 1.0.0 (since SoSe15)		L
Person responsible for module: Prof. D	or. Klaus Ruhland	
Contents:		
Introduction to polymer science		
 Elastomers and elastoplastic matrix 	terials	
 Memory-shape polymers 		
Piezoelectric polymers		
 Electrically conducting polymers Ion-conducting polymers 		
Ion-conducting polymersMagnetic polymers		
Photoresponsive polymers		
 Polymers with second order non 	-linear optical properties	
Polymeric catalysts		
 Self-healing polymers 		
 Polymers in bio sciences> 		
Learning Outcomes / Competences		
The students learn how polymeric mat	erials can be designed and applied to act	t in a smart manner on an external
mechanical, magnetic, electric, optical	thermal or chemical impact.	
Workload:		
Total: 180 h		
60 h lecture and exercise course (atter	-	
20 h studying of course content using		
20 h studying of course content using		
80 h studying of course content throug	h exercises / case studies (sell-study)	r
Conditions:		
and MRM-0050 (Grundlagen der Polyr	035 (Chemie I), PHM-0036 (Chemie II)	
and Mikim-0050 (Grundlagen der Polyr		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Functional Poly	more	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Assigned Courses:		
Functional Polymers (lecture)		
Part of the Module: Functional Poly		
Mode of Instruction: exercise course		
Language: English		
Contact Hours: 1		

Assigned Courses:

Functional Polymers (Tutorial) (exercise course)

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Module PHM-0168: Modern Meta	llic Materials	6 ECTS/LP
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	r. Ferdinand Haider	
Contents:		
Review of physical metallurgy		
Steels:		
principles		
 common alloying elements martensitic transformations 		
dual phase steels		
TRIP and TWIP steels		
maraging steelelectrical steel		
 production and processing 		
Aluminium alloys:		
• 2xxx		
• 6xxx		
• 7xxx		
 Processing – creep forming, hydr 	roforming, spinforming	
Titanium alloys		
Magnesium cast alloys		
Superalloys		
Intermetallics, high entropy alloys		
Copper, brass, bronzes		
Metallic glasses		
Alloy design		
Learning Outcomes / Competences:		
Students		
 learn about all kinds of actual me basic concepts 	stallic alloys, their properties and how the	ese properties can be derived from
Workload:		
Total: 180 h		
20 h studying of course content using I 80 h studying of course content through		
20 h studying of course content using p		
60 h lecture and exercise course (atten		
Conditions:		
Recommended: Knowledge of physical	l metallurgy and physical chemistry	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	

Parts of the Module

Part of the Module: Modern Metallic Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Cahn-Haasen-Kramer: Materials Science and Technology

Original literature

Examination

Modern Metallic Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Modern Metallic Materials

Module PHM-0196: Surfaces an	d Interfaces II: Joining processes	6 ECTS/LF
Version 1.1.0 (since WS15/16) Person responsible for module: Prof. Dozenten: Prof. Dr. Siegfried Horn, D	-	
Learning Outcomes / Competences The students	::	
	hesion	
Workload: Total: 180 h		
Conditions: Basic knowledge on materials science Module Surfaces and Interfaces (PHN		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: any	
Parts of the Module		
Part of the Module: Surfaces and Ir Mode of Instruction: lecture Lecturers: Prof. Dr. Siegfried Horn Language: German Contact Hours: 3	iterfaces II: Joining processes	
Contents: The following topics are treated:		
 Introduction to adhesion Role of surface and interface pro Introduction to interactions at sur Adhesion theories Surface and interface energy Surface treatment techniques Joining techniques Physical and chemical properties Applications 	faces and interfaces	
Literature:	· · · · ·	ed at the beginning of the lecture
Literature, including actual acientit		
Literature, including actual scientif Assigned Courses:	ic papers and reviews, will be announce	

Examination

Surfaces and Interfaces II: Joining processes

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces II: Joining processes

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course

Language: German

Contact Hours: 1

Assigned Courses:

Übung zu Surfaces and Interfaces II: Joining processes (exercise course)

Non-Destructive Testing	ctive Testing	6 ECTS/LP
Version 1.0.0 (since WS14/15) Person responsible for module: Prof.	Dr. Markus Sause	
Contents:		
Introduction to nondestructive t	testing methods	
 Visual inspection 	5	
Ultrasonic testing		
 Guided wave testing 		
Acoustic emission analysis		
Thermography		
 Radiography Eddy current testing		
 Eddy current testing Specialized nondestructive me 	thods	
Learning Outcomes / Competence The students	5.	
	of nondestructive evaluation of materials	
	ncepts in nondestructive measurement to	
•	ire further knowledge of the scientific top	•
 Integrated acquirement of soft 	•	5
Workload:		
Total: 180 h		
60 h lecture and exercise course (att	endance)	
20 h studying of course content using		
20 h studying of course content using		
	igh exercises / case studies (self-study)	
Conditions:		
Basic knowledge on materials science	e, in particular composite materials	
,		
•	Recommended Semester:	Minimal Duration of the Module:
•	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
•		
Frequency: each winter semester	from 1. Repeat Exams Permitted: according to the examination	
Frequency: each winter semester Contact Hours:	from 1. Repeat Exams Permitted:	
Frequency: each winter semester Contact Hours: 4	from 1. Repeat Exams Permitted: according to the examination	
Frequency: each winter semester Contact Hours: 4 Parts of the Module	from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture	from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English	from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English Contact Hours: 3	from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English Contact Hours: 3	from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destructiv Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	from 1. Repeat Exams Permitted: according to the examination regulations of the study program	

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Module PHM-0203: Physics of C Physics of Cells	ells	6 ECTS/L
/ersion 1.0.0 (since WS16/17) Person responsible for module: Prof. [Dr. Achim Wixforth	
Dr. Christoph Westerhausen		
Contents:	-	
Physical principles in Biology		
Cell components: cell membrane	e, organelles, cytoskeleton	
 Thermodynamics of proteins and 	•	
Physical methods and technique		
Cell adhesion – interplay of spec		
 Tensile strength and elasticity of Micro mechanics of the cell 	tissue - macromolecules of the extra cel	liular matrix
Cell-cell-communication		
Cell migration		
Cell stimulation and cell-comput	er-communication	
Learning Outcomes / Competences	:	
The students		
get to know a highly interdiscipli	nary field of physics.	
 learn the basics on physical prop 	perties of human cells, as building blocks	s of living organisms.
 learn about the impact of forces 	on the behavior of living cells	
 learn physical description of fund 		
 are able to express biophysical 	questions and define model systems to a	inswer these questions.
The students learn the following key q	ualifications:	
 self-dependent working with English 	glish specialist literature.	
 presentation techniques. 		
documentation of experimental		
 interdisciplinary thinking and wo 	rking.	
Workload:		
	h exercises / case studies (self-study)	
20 h studying of course content using		
20 h studying of course content using 60 h lecture and exercise course (atte	· · · · ·	
Conditions:	,	Credit Requirements:
Mechanics, Thermodynamics		Bestehen der Modulprüfung
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Cells	;	
Mode of Instruction: lecture		

Language: English / German

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

- Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010.
- Nelson, Philip. Biological physics. New York: WH Freeman, 2004.
- Boal, D. Mechanics of the Cell. Cambridge University Press, 2012.
- Lecture notes

Part of the Module: Physics of Cells (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 2

Learning Outcome:

see module description

Contents:

see module description

Literature:

see module description

Examination

Physics of Cells

oral exam / length of examination: 30 minutes

niques	ray and Neutron Diffraction Tech-	6 ECTS/LI
Version 1.0.0 (since SoSe17) Person responsible for module: Prof. D PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
-	-ray and neutron diffraction techniques:	
Beyond the standard model: TheHow to obtain and analyze expension	rimental charge densities sical properties from diffraction data	ction
Learning Outcomes / Competences: The students:		
neutron diffraction dataknow the basics of the <i>Quantum</i>	e on the reconstruction of accurate electro Theory of Atoms in Molecules pology of the electron density and correla	
Remarks: ELECTIVE COMPULSORY MODULE		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using I 80 h studying of course content throug 20 h studying of course content using p	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: It is recommended to complete the Mo	dule PHM-0053 Chemical Physics I.	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- 1. C. Giacovazzo et al., Fundamentals of Crystallography, Oxford Univ. Press, 2011.
- 2. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 3. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.
- 4. P. Coppens, X-ray Charge Densities and Chemical Bonding, Oxford Univ. Press, 1997.
- 5. P. Popelier, Atoms in Molecules: An Introduction, Longman, 1999.

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (lecture)

Part of the Module: Advanced X-ray and Neutron Diffraction Techniques (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Advanced X-ray and Neutron Diffraction Techniques (Tutorial) (exercise course)

Examination

Advanced X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced X-ray and Neutron Diffraction Techniques

	8 ECTS/LF
Person responsible for module: Andreas Hörner	
Contents: 1. Basics in electronic and electrical engineering [4] 2. Quadrupole theory [2] 3. Analog technique, transistor and opamp circuits [5] 4. Boolean algebra and logic [4] 5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] carning Outcomes / Competences: rhe students: • know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital elethorize in independent working on circuit problems. They can calculate and develocate expertise in independent working on circuit problems. They can calculate and develocate expertise in independent working on circuit problems. They can calculate and develocate expertise in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials (contant develocate experise course (attendance) Conditions: Credit Require written report (from 1. Total: 240 h 1 semester[s] Conditions: <td< td=""><td></td></td<>	
 Quadrupole theory [2] Analog technique, transistor and opamp circuits [5] Boolean algebra and logic [4] Digital electronics and calculation circuits [6] Microprocessors and Networks [4] Basics in Electronic [8] Implementation of transistors [8] Operational amplifiers [8] Digital electronics [8] Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, have expertise in independent working on circuit problems. They can calculate and devel Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Workload: Total 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: Credit Require from 1. Semester[s] Repare Exams Permitted: according to the examination regulation regulations of the study program 	
 Analog technique, transistor and opamp circuits [5] Boolean algebra and logic [4] Digital electronics and calculation circuits [6] Microprocessors and Networks [4] Basics in Electronic [8] Implementation of transistors [8] Operational amplifiers [8] Digital electronics [8] Practical circuit arrangement [8] Learning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, have skills in easy circuit design, measuring and control technology, analog and digital eletherates in independent working on circuit problems. They can calculate and devel Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Vorkload: Total: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: none Credit Require written report (Frequency: each semester Repeat Exams Permitted: according to the examination regulations of the study program Contact Hours: A substance <p< td=""><td></td></p<>	
Boolean algebra and logic [4] Digital electronics and calculation circuits [6] Microprocessors and Networks [4] Basics in Electronic [8] Implementation of transistors [8] Operational amplifiers [8] Outcomes / Competences: Index skills in easy circuit design, measuring and control technology, analog and digital ele have expertise in independent working on circuit problems. They can calculate and devel Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Courtient I fortal: 240 h H40 h studying of course content using provided materials (self-study) H00 h lecture and exercise course (attendance) Conditions:	
5. Digital electronics and calculation circuits [6] 6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital ele • have skills in easy circuit design, measuring and control technology, analog and digital ele • have skills in easy circuit design, measuring and control technology, analog and digital ele • have skills in easy circuit design, measuring and control technology, analog and digital ele • have skills in easy circuit for the lecture problems. They can calculate and devel Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Total: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: viriten report (Frequency: each semester Recommended Semester: from 1. Credit Require: according to the examination regulations of the study program	
6. Microprocessors and Networks [4] 7. Basics in Electronic [8] 8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital elethave expertise in independent working on circuit problems. They can calculate and develower and exercise course: Electronics for Physicists and Materials Scientists (control tecture) excludes credit points for the lecture Electronics for Physicists and Materials Contact Hours: Credit Require more Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	
8. Implementation of transistors [8] 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] cearning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, have skills in easy circuit design, measuring and control technology, analog and digital elethology analog and digital elethology. have expertise in independent working on circuit problems. They can calculate and develower Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Total: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: none Conditions: none Credit Require written report (according to the examination regulations of the study program Image: A study program Image: A study program	
 9. Operational amplifiers [8] 10. Digital electronics [8] 11. Practical circuit arrangement [8] earning Outcomes / Competences: The students: know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, have skills in easy circuit design, measuring and control technology, analog and digital elethose expertise in independent working on circuit problems. They can calculate and developments: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Total: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: none Credit Require written report (from 1. Erequency: each semester Repeat Exams Permitted: according to the examination regulations of the study program 	
10. Digital electronics [8] 11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital eletter have expertise in independent working on circuit problems. They can calculate and develow expertise in independent working on circuit problems. They can calculate and develow expertise in the Method Course: Electronics for Physicists and Materials Scientists (contant) excludes credit points for the lecture Electronics for Physicists and Materials Attendance in the Method Course: Electronics for Physicists and Materials Scientists (contant) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Fotal: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: Credit Require written report (Frequency: each semester Recommended Semester: from 1. Minimal Durat 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Image: study program	
11. Practical circuit arrangement [8] Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital eletter bave expertise in independent working on circuit problems. They can calculate and develower expertise in independent working on circuit problems. They can calculate and develower expertise in the problem to the lecture problems. They can calculate and develower expertise in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Fotal: 240 h 140 h studying of course content using provided materials (self-study) IOO h lecture and exercise course (attendance) Conditions: Credit Require written report (Terequency: each semester Recommended Semester: Minimal Durat from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program Image: study program Image: study program	
Learning Outcomes / Competences: The students: • know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, • have skills in easy circuit design, measuring and control technology, analog and digital el • have expertise in independent working on circuit problems. They can calculate and devel Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Fotal: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: none Trequency: each semester Repeat Exams Permitted: according to the examination regulations of the study program	
The students:	
 know the basic terms, concepts and phenomena of electronic and electrical engineering laboratory, have skills in easy circuit design, measuring and control technology, analog and digital eleters in independent working on circuit problems. They can calculate and developments: Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (contant) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Fotal: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: none Frequency: each semester Recommended Semester: from 1. Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program 	
laboratory, have skills in easy circuit design, measuring and control technology, analog and digital eff. have expertise in independent working on circuit problems. They can calculate and devel Remarks: ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (contant) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Fotal: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: none Frequency: each semester Repeat Exams Permitted: according to the examination regulations of the study program	
ELECTIVE COMPULSORY MODULE Attendance in the Method Course: Electronics for Physicists and Materials Scientists (con AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Norkload: Total: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: Credit Require none Recommended Semester: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	electronics,
AND lecture) excludes credit points for the lecture Electronics for Physicists and Materials Workload: Total: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: Credit Require none written report (Frequency: each semester Recommended Semester: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	
Fotal: 240 h 140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: Credit Require written report (none Recommended Semester: Frequency: each semester Recommended Semester: from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	
140 h studying of course content using provided materials (self-study) 100 h lecture and exercise course (attendance) Conditions: Credit Require none written report (Frequency: each semester Recommended Semester: Minimal Durat from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination r use of the study program regulations of the study program	
100 h lecture and exercise course (attendance) Credit Require written report (Conditions: written report (Frequency: each semester Recommended Semester: Minimal Durat from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: r according to the examination regulations of the study program regulations of the study program	
Conditions: Credit Require written report (written report (written report (written report (from 1. Frequency: each semester Recommended Semester: Minimal Durat 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	
hone written report (Frequency: each semester Recommended Semester: Minimal Durat from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	
Frequency: each semester Recommended Semester: Minimal Durat from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	ements:
from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	(one per group)
from 1. 1 semester[s] Contact Hours: Repeat Exams Permitted: according to the examination regulations of the study program	tion of the Module:
Contact Hours: Repeat Exams Permitted: according to the examination according to the study program	
according to the examination regulations of the study program	
regulations of the study program	
Part of the Module: Method Course: Electronics for Physicists and Materials Scientists	
Mode of Instruction: lecture	

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

Method Course: Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Method Course: Electronics for Physicists and Materials Scientists

Module PHM-0147: Method Cour	rse: Electron Microscopy	8 ECTS/LP
Version 1.0.0 (since SoSe15)		•
Person responsible for module: Prof. I	Dr. Ferdinand Haider	
Contents:		
1. Scanning electron microscopy (SEM)	
2. Transmission electron microsco	py (TEM)	
Learning Outcomes / Competences	:	
The students:		
lectures to teach the theoretical		
Remarks: ELECTIVE COMPULSORY MODULE		
Total: 240 h 150 h studying of course content using 90 h lecture and exercise course (atte		
Conditions: Recommended: knowledge of solid-sta	· · · · · · · · · · · · · · · · · · ·	Credit Requirements: regular participation, oral presentation (10 min), written report (one report pe
		group)
Frequency: each summer semester	Recommended Semester: from 2.	group) Minimal Duration of the Module: 1 semester[s]
Frequency: each summer semester Contact Hours:		Minimal Duration of the Module:
	from 2.	Minimal Duration of the Module:
Contact Hours:	from 2. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
Contact Hours: 6 Parts of the Module	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
6	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:

Contact Hours: 2

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Electron Microscopy report Examination Prerequisites: Method Course: Electron Microscopy

Module PHM-0148: Method Cou Method Course: Optical Properties of	rse: Optical Properties of Solids Solids	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Joachim Deisenhofer	
Contents: Electrodynamics of solids		
Maxwell equationsElectromagnetic wavesRefraction and interference, Free	esnel equations	
FTIR spectroscopy		
Fourier transformationMichelson-Morley and Genzel inSources and detectors	nterferometer	
Terahertz Time Domain spectroscopy		
Generation of pulsed THz radiaGated detection, Austin switche		
Elementary excitations in solid materia	als	
 Rotational-vibrational bands Infrared-active phonons Interband excitations Crystal-field excitations 		
Learning Outcomes / Competences The students:	::	
	-	
Remarks:		
Workload: Total: 240 h 90 h lecture and exercise course (atte 30 h studying of course content using 30 h studying of course content using 90 h studying of course content throug	provided materials (self-study)	
Conditions:		Credit Requirements:
Recommended: basic knowledge in s electrodynamics and optics	olid-state physics, basic knowledge in	written report
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Assigned Courses:

Method Course: Optical Properties of Solids (lecture)

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course

Language: English Contact Hours: 4

Assigned Courses:

Method Course: Optical Properties of Solids (Practical Course) (internship)

Examination

Method Course: Optical Properties of Solids report Examination Prerequisites: Method Course: Optical Properties of Solids

Module PHM-0149: Method Course: Methods in Biophysic		8 ECTS/LP
Version 1.0.0 (since SoSe15)	·	
Person responsible for module: Dr. Sto	efan Thalhammer	
Contents:		
Unit radiation biophysics		
Concepts in radiation protection		
 Low-dose irradiation biophysics DNA repair dynamics of living ce 	alls after ionizing radiation	
Confocal scanning laser microso	-	
Unit microfluidic		
Microfluidic systems		
Accoustic driven microfluidics		
Calculation of microfluidic proble	ems	
Unit analysis		
Learning Outcomes / Competences	:	
The students:		
-	phenomena in radiation biophysics,	
	ic and biophysical phenomena on sma	all length scales and applications and
technologies of microfluidic anal	ytical systems, immun-histochemical staining procedu	
learn skills in fluorescence and		
learn skills to calculate fluidic pre		
 learn skills to handle microfluidid 	-	
Remarks:		
ELECTIVE COMPULSORY MODULE	1	
The course will partly take place at the	Helmholtz Center Munich.	
Workload:		
Total: 240 h		
Conditions:		Credit Requirements:
Attendance of the lecture "Biophysics	and Biomaterials"	1 written lab report
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Method Course:	Methods in Biophysics	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 2		
Assigned Courses:		
Assigned Courses.		

Part of the Module: Method Course: Methods in Biophysics (Practical Course) Mode of Instruction: laboratory course Language: English

Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Assigned Courses:

Method Course: Methods in Biophysics (Practical Course) (internship)

Examination

Method Course: Methods in Biophysics report Examination Prerequisites: Method Course: Methods in Biophysics

Module PHM-0151: Method Cou and Characterization	rse: Porous Materials - Synthesis	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Dirk Volkmer	
Contents: Synthesis of porous functional materia Frameworks)	als (e.g. aerogels, mesoporous silica mat	erials, zeolites, Metal-Organic
Characterization methods		
 Structure and composition (XRE Thermal analysis (TGA) Adsorption and diffusion (BET,) Catalytic properties (GC/MS, TF 	pore size distribution, pulse chemisorption	n)
Learning Outcomes / Competences The students will learn how to		
use modern solid state preparatemploy analytical methods dedi	ion techniques (e.g. hydrothermal, solvot cated to porous materials.	hermal, microwave synthesis),
Remarks: ELECTIVE COMPULSORY MODULE	- 	
Total: 240 h 120 h internship / practical course (att 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	literarture (self-study)	
Conditions: Recommended: lecture Functional Po		Credit Requirements: written report (editing time 3 weeks) + written exam
		Please note that final grade of the Method Course consists of the maximum point score of of the exam and the grade of the report of the practical part which are weighted (40:60).
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination	

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Module PHM-0153: Method Court ting Materials Method Course: Magnetic and Superc	rse: Magnetic and Superconduc-	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Philipp Gegenwart	
Contents: Methods of growth and characterization	n:	
Sample preparation (bulk materials ar	d thin films), e.g.,	
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanning t magnetic susceptibility, electrica specific heat 		
Learning Outcomes / Competences The students	:	
thin-film growth, X-ray diffractionare trained in planning and performlearn to evaluate and analyze the	n, magnetic susceptibility, dc-conductivit	problems in experimental solid state
Workload: Total: 240 h 30 h studying of course content using 30 h studying of course content using 90 h studying of course content throug 90 h lecture and exercise course (atte	literarture (self-study) h exercises / case studies (self-study)	
Conditions: Recommended: basic knowledge in so mechanics	olid state physics and quantum	Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: lecture Language: English	Magnetic and Superconducting Mat	erials

Contact Hours: 2

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (lecture)

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Magnetic and Superconducting Materials (Practical Course) (internship)

Examination

Method Course: Magnetic and Superconducting Materials

Examination Prerequisites:

Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Co Spectroscopy	ourse: Modern Solid State NMR	8 ECTS/LP
Version 2.0.0 (since SoSe17) Person responsible for module: Pro	f. Dr. Leo van Wüllen	
Contents: Physical foundations of NMR spect	roscopy	
Internal interactions in NMR spectro	oscopy	
Chemical shift interactionDipole interaction andQuadrupolar interaction		
Magic Angle Spinning techniques		
Modern applications of NMR in mat	erials science	
Experimental work at the Solid-Stat	e NMR spectrometers, computer-aided ar	alysis and interpretation of acquired data
 gain basic practical knowledge can under guidance plan characterization of advanced Remarks: ELECTIVE COMPULSORY MODU Workload: Total: 240 h 30 h studying of course content usi 90 h studying of course content three 	obysical foundations of modern Solid-State le of operating a solid-state NMR spectron , perform, and analyze modern solid-state materials. ILE ng literarture (self-study) pugh exercises / case studies (self-study)	neter,
30 h studying of course content usi 90 h lecture and exercise course (a		
Conditions:	EL METHODS IN SOLID STATE NMR	Credit Requirements: Bestehen der Modulprüfung
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Cour Mode of Instruction: seminar	se: Modern Solid State NMR Spectrosc	ору

Language: English

Contact Hours: 2

Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (seminar)

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (Practical Course) (internship)

Examination

Method Course: Modern Solid State NMR Spectroscopy

report / work period for assignment: 2 weeks

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

	rse: Coordination Materials	8 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I Dr. Hana Bunzen	Dr. Dirk Volkmer	
Contents:		
diffraction) 3. Material composition and stabilit		s spectroscopy, IR spectroscopy, X-ray rrying materials)
Learning Outcomes / Competences	:	
The students will learn how to:		
-	ounds by selected analytical techniques materials based on organic / inorganic	
Remarks: ELECTIVE COMPULSORY MODULE		
Total: 240 h 120 h lecture and exercise course (att 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using	literarture (self-study) gh exercises / case studies (self-study)	
Conditions: none		Credit Requirements: written report (protocols)
	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Frequency: each summer semester Contact Hours: 6		
Frequency: each summer semester Contact Hours: 6	from 2. Repeat Exams Permitted: according to the examination	
Frequency: each summer semester Contact Hours: 6 Parts of the Module Part of the Module: Method Course: Mode of Instruction: laboratory course Language: English	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical C	1 semester[s]
Frequency: each summer semester Contact Hours: 6 Parts of the Module	from 2. Repeat Exams Permitted: according to the examination regulations of the study program Coordination Materials (Practical C	1 semester[s]

Part of the Module: Method Course: Coordination Materials (Seminar)

Mode of Instruction: seminar

Language: English

Contact Hours: 2

Literature:

- Chemical databases
- Primary literature

Assigned Courses:

Method Course: Coordination Materials (Seminar) (seminar)

Examination

Method Course: Coordination Materials (Seminar) seminar Examination Prerequisites:

Method Course: Coordination Materials (Seminar)

Module PHM-0172: Method Cour Materials	se: Functional Silicate-analogous	8 ECTS/LF
Version 1.0.0 (since SoSe15)		1
Person responsible for module: Prof. D	r. Henning Höppe	
Contents:		
Synthesis and characterization of funct	ional materials according to the topics:	
 Silicate-analogous compounds Luminescent materials / phospho Pigments Characterization methods: XRD, 	ors spectroscopy (luminescence, UV/vis, F⁻	T-IR), thermal analysis
Learning Outcomes / Competences: The students will know how to:		
autoclave reactions, use of silica	aration techniques (e.g. solid state react ampoules), heres (e.g. reducing, inert conditions), s from single-crystal data,	ion, sol-gel reaction, precipitation,
Remarks: ELECTIVE COPULSORY MODULE		
Workload: Total: 240 h 120 h lecture and exercise course (atte 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content throug	provided materials (self-study) iterarture (self-study)	
Conditions: Recommended: attendance to the lect	ure "Advanced Solid State Materials"	Credit Requirements: written report (protocol)
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	1	<u></u>

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Assigned Courses:

Method Course: Functional Silicate-analogous Materials (Practical Course) (internship)

Examination

Method Course: Functional Silicate-analogous Materials

seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0206: Method Cour under Pressure Method Course: Infrared Microspectro		8 ECTS/LP
Version 1.0.0 (since WS16/17) Person responsible for module: Prof. I	Dr. Christine Kuntscher	J
Contents: Electrodynamics of solids		
Maxwell equations and electromagnet	ic waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and semicond	ductors (Drude)	
ii. Interband absorptions in semiconduiii. Vibrational absorptionsiv. Multilayer systems	ctors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrometers i. Light sources ii. Interferometers iii. Detectors		
Microscope components High pressure experiments Equipment	S	
Pressure calibration		
Experimental techniques under high pr i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	ressure	
Learning Outcomes / Competences		
The students		
Learn about the basics of the light inte	raction with various materials and the fur	ndamentals of FTIR microspectroscopy
Are introduced to the high pressure eq	uipments used in infrared spectroscopy,	
Learn to carry out infrared microspectr	oscopy experiments under pressure,	
Learn to analyze the measured optical	spectra.	
Workload: Total: 240 h		
Conditions: none		Credit Requirements: Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: German

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course

Language: German

Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

Examination

Method Course: Infrared Microspectroscopy under Pressure report

f. Dr. Ferdinand Haider	
IA alorimetry: MDSC	
es:	
nal processes in condensed matter ,e.g. ceramics) mplex experiments and the usage of adv	
ng literarture (self-study) tendance) nugh exercises / case studies (self-study)	Credit Requirements: regular participation, oral presentation
Recommended Semester:	(10 min), written report Minimal Duration of the Module:
from 1. Repeat Exams Permitted: according to the examination regulations of the study program	1 semester[s]
	from 1. Repeat Exams Permitted: according to the examination

Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination Method Course: Thermal Analysis report

	Irse: X-ray Diffraction Techniques	8 ECTS/LF
Version 1.0.0		
Person responsible for module: Prof. PD Dr. Georg Eickerling	Dr. Wolfgang Scherer	
Contents:		
Subjects of the practical training and of X-ray diffraction techniques:	the accompanying lecture are the theoret	ical basics and the practical application
Data collection and reduction techniq	ues	
Symmetry and space group determine	ation	
Structural refinements: • The Rietveld method • Difference Fourier synthesis		
Structure determination:		
Patterson methodDirect methods		
Interpretation of structural refinement	results	
Errors and Pitfalls: twinning and disor	der	
Learning Outcomes / Competences The students:	5:	
	guidance phase-analyses and X-ray struc s-on the structure-property relationships o	
Workload:		_
Total: 240 h		
90 h lecture and exercise course (atte	-	
90 h studying of course content throu	gh exercises / case studies (self-study)	
30 h studving of course content using	i literarture (self-study)	
30 h studying of course content using 30 h studying of course content using		
30 h studying of course content using Conditions:		
		Minimal Duration of the Module: 1 semester[s]
30 h studying of course content using Conditions: none Frequency: each winter semester	provided materials (self-study) Recommended Semester:	
30 h studying of course content using Conditions: none Frequency: each winter semester Contact Hours:	Recommended Semester: from 1.	
30 h studying of course content using Conditions: none Frequency: each winter semester Contact Hours: 6	provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
30 h studying of course content using Conditions: none	provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
30 h studying of course content using Conditions: none Frequency: each winter semester Contact Hours: 6 Parts of the Module	provided materials (self-study) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: X-ray Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course Language: German Contact Hours: 4

Examination

Method Course: X-ray Diffraction Techniques

written exam / length of examination: 90 minutes

Module PHM-0234: 2D Materials		6 ECTS/LP
2D Materials		
Version 1.0.1 (since SoSe18)		
Person responsible for module: Prof. D	Dr. Hubert J. Krenner	
Contents:		
Two-dimensional materials: graphene	to emerging new materials, such as trans	sition metal dichalcogenides
1. Fabrication		
 Optical, electronic and vibrationa Applications in advanced functio 		
Learning Outcomes / Competences:	olid state materials and their properties.	
	n and nanofabrication methods for 2D ma	aterials.
	erentiate between suitable optical and st	
2D materials.		
4. Understand and explain phonon	• •	a the questum Hell offect in such as
	o quantum transport phenomena such as ion, excitonic and spin properties of trans	
	cuss applications of 2D materials and the	-
optoelectronic, spintronics device		
Workload:		*
Total: 180 h		
20 h studying of course content using	iterarture (self-study)	
20 h studying of course content using	provided materials (self-study)	
60 h lecture (attendance)	h oversizes / ease studies (self study)	
80 h studying of course content throug		1
Conditions: recommended prerequisites: basic kno	wledge in solid-state physics and	
quantum mechanics.	when the solid-state physics and	
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module:
	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: 2D Materials		
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
ECTS Credits: 6		
Learning Outcome: see module description		
Contents:		
see module description		
Assigned Courses:		
2D Materials (lecture)		
. ,		

Examination 2D Materials oral exam / length of examination: 30 minutes Examination Prerequisites: 2D Materials

Module PHM-0235: Method Cour	se: 2D Materials	8 ECTS/LP
Method Course: 2D Materials		
Version 1.0.1 (since SoSe18)		
Person responsible for module: Prof. D	Dr. Hubert J. Krenner	
 Contents: Fabrication of monolayers of 2D Characterization of the structura Modelling of selected physical prime 	I, optical and vibrational properties of 2D	Materials
• • • • • • • • • • • • • • • • • • • •	tion of fabrication of selected monolayer tion of basic characterization methods fo n methods	
Workload: Total: 240 h 90 h lecture and exercise course (atter 90 h studying of course content throug 30 h studying of course content using 30 h studying of course content using	h exercises / case studies (self-study) literarture (self-study)	
Conditions: Basic knowledge of solid state physics	, optics and quantum mechancis	Credit Requirements: written report, editing time 3 weeks, max. 30 pages
Frequency: each summer semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		•
Part of the Module: Method Course: Mode of Instruction: lecture Language: English Contact Hours: 2	2D Materials (Lecture)	
Assigned Courses:		
Method Course: 2D Materials (lecture	e)	
Part of the Module: Method Course: Mode of Instruction: laboratory cours Language: English Contact Hours: 4		
Assigned Courses:		

Examination Method Course: 2D Materials report Description: written report

Module PHM-0169: Masterthesis		26 ECTS/LP
Version 1.0.0 (since SoSe15) Person responsible for module: P	rof. Dr. Dirk Volkmer	
Contents: According to chosen topic		
Remarks: COMPULSORY MODULE		
Workload: Total: 780 h 260 h studying of course content of 520 h lecture and exercise course	using provided materials (self-study) (attendance)	
Conditions: To begin with the Masterthesis students must have acquired 72 CP from modules consisting of the modulgroups 1a - 5.		Credit Requirements: written thesis
Recommended: according to the	espective advisor	
Frequency: each semester	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Masterthesi Language: English	S	
Learning Outcome: see description of module		
Contents: see description of module		
Examination Masterthesis Master's thesis Examination Prerequisites:		

Module PHM-0170: Colloquium		4 ECTS/LP
Version 1.0.0 (since SoSe15)		
Person responsible for module: Pro	of. Dr. Dirk Volkmer	
Contents:		
According to the respective Master	thesis	
Remarks:		
COMPULSORY MODULE		
Workload:		
Total: 120 h		
80 h lecture and exercise course (a		
40 h studying of course content usi	ng provided materials (self-study)	
Conditions:		
submission of the masterthesis		
Frequency: each semester	Recommended Semester:	Minimal Duration of the Module:
	from 4.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
1	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Colloquium		
Language: English		
Learning Outcome:		
see description of module		
Contents:		
see description of module		
Examination		
Colloquium		
seminar / length of examination	: 20 minutes	

Examination Prerequisites:

Colloquium